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ABSTRACT: Calculating accurately the optimal hedge ratio plays an important role in the futures 
market for both practitioners and academicians. In this paper, we combine copula and nonparametric 
technique, where marginal setting is modeled by nonparametric technique and bivariate is linked by 
dynamic Patton (2006)'s SJC copula function, to estimate the parameters of optimal hedge ratio. 
Various types of GARCH models to fit the marginal distribution are also compared. Furthermore, 
model specification for marginal setting is investigated by Hong and Li (2005)'s statistics, which test 
the i.i.d. and U(0,1) simultaneously. The empirical results show that transformed residuals generated 
by nonparametric technique are i.i.d. U(0,1), while most of one generated by popular GARCH-type 
are not. For hedging effectiveness, our methods perform better than traditional copula-GARCH 
models. The robust test also supports the results. 
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1. Introduction 

The fundamental function of futures market is hedging. The most important issue is to determine 
the optimal hedge ratio in hedging with related futures products. The optimal hedge ratio consists of 
the optimized objective function and the ways of parametric estimation. Chen, Lee, and Shrestha 
(2003) do an excellent review for hedge ratio based on various objective functions. This paper only 
focuses on the estimation of the optimal hedge ratio rather than the design of optimized objective 
function. The conventional method to calculate the optimal hedge ratio is the coefficient of regression 
the spot on the futures, named ordinary least squares (OLS) approach (Ederington, 1979; Malliaris and 
Urrutia, 1991; Benet, 1992). However, the optimal hedge ratio is constant over time. Grammatikos and 
Aunder (1983) extend to time-varying hedge ratio by random coefficient technique. Bivariate 
GARCH-type models are also popular to be modeled the dynamic optimal hedge ratio (Cecchetti et al., 
1988; Baillie and Myers, 1991; Sephton, 1993; Park and Switzer, 1995; Choudhry, 2003). The 
drawback of these models cannot capture the phenomenon of the symmetry and nonlinear dependence 
in the returns, which is common style in financial market (Cont, 2001; Longin and Solnik, 2001; Ang 
and Chen, 2002; Patton, 2006; Hong et al., 2007; Pan et al., 2014). The issue of dimension curse arises 
since many parameters are needed to estimate. Thanks to the Sklar's theorem, these problems have 
been solved to some extent. For example, copula-GARCH model is constructed to consider the style 
of returns, which marginal distribution is modeled by GARCH-class models with skewed-t distribution 
and nonlinear dependence is measured by various copula functions (Patton, 2006; Hsu et al., 2008; Lai 
et al., 2009; Wei et al., 2011). As mentioned by Patton (2006), before linking the bivariate using copula 
function, checking the i.i.d.U(0,1) of the transformed residuals is required. Most of papers take i.i.d. 
                                                             
1 This work was supported by the Chinese National Science Foundation through grant number 70971087. 
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test and U(0,1) test apart. However, according to Hong and Li (2005), testing hypothesis of i.i.d.U(0,1) 
jointly is not equal to testing individually. 

We propose a copula and nonparametric models for the optimal hedge ratio and find some 
evidence which is not presented in the previous literatures. First, using the nonparametric technique 
models the marginal distribution. Comparing to the GARCH-class methods, our methods are 
model-free, which avoids the risk of model misspecification. Second, test the null hypothesis of 
i.i.d.U(0,1) jointly by Hong and Li (2005)'s statistics. To our knowledge, most of test is apart, i.e., the 
null hypothesis of i.i.d is checked by Ljung-Box Q-test for first moment correlation and Engle test for 
higher moment correlation, and the standard Uniform distribution is tested by traditional 
Kolmogorov-Smirnov test. Therefore, our joint testing procedure is more accurate than other 
procedure. Third, the empirical results show that the transformed residuals generated by nonparametric 
technique pass the Hong and Li (2005)'s statistics but many popular GARCH-class models do not at  
5%significant level. The hedging effectiveness based our approach is superior to one based popular 
copula-GARCH approach. 

The remainder of this paper is as follows. Section 2 introduces the optimal hedge ratio based 
Minimum-Variance function and hedging effectiveness. Section 3 proposes a copula and 
nonparametric models to calculate the optimal hedge ratio, take traditional copula-GARCH approach 
as benchmark and sketch Hong and Li (2005)'s statistics. Application for CSI 300 index futures are 
presented in Section 4. Summary and conclusion are in section 5. 

 
2. Optimal Hedge Ratio and Hedging Effectiveness 

Based on various objective functions, the optimal hedge ratios show slightly different. Chen, Lee 
and Shrestha (2003) do a comprehensive review for these differences. This paper focuses on the most 
widely used Minimum-Variance hedge ratio, which minimize the portfolio variance. 
Minimum-Variance hedge ratio is first proposed by Johnson (1960) and adopted widely in the recent 
literature. Lai et al. (2009), Wei et al. (2011) and among others apply this hedge ratio to test their 
strategies. Following the spirit of Minimum-Variance objective function, we define the optimal hedge 
ratio as follows, 

h୲∗ =
cov(rୱ,୲, r୤,୲)
var(r୤,୲)

= ρ୲
σୱ,୲
σ୤,୲

		,																										(2.1) 

Where h୲∗ is the optimal hedge ratio at time t, which means per unit value of a long spot position 
needs to short h୲∗units in the futures markets. rୱ,୲	and	r୤,୲ denote the logarithmic returns of the spot 
and futures, respectively. σୱ,୲ and σ୤,୲  are the standard deviations of rୱ,୲  and r୤,୲ at time t, 
respectively.	ρ୲	denotes the time-varying correlation coefficient. 

To measure the performance of hedge strategy, following Ederington (1979), Park and Switzer 
(1995), Wei, Wang and Huang (2011) and among others, the hedging effectiveness is given by: 

E =
σ୰౩
ଶ − σ୰౞

ଶ

σ୰౩
ଶ = 1 −

σ୰౞
ଶ

σ୰౩
ଶ 																																							(2.2) 

Where subscript r୦ is the returns of hedged portfolio, i.e.,r୦ = rୱ − hr୤. σ୰౞
ଶ 	and	σ୰౩

ଶ  denote the 
variance of the hedged portfolio and only holding spot, respectively. From equation (2.2), as E 
reaching to 1, the hedging effectiveness is more sufficient. 

 
3. Hedge Strategies 

Under the framework describing the optimal hedge ratio in Section 2, the crucial task is how to 
accurately measure the dependence coefficient ρ୲, standard deviation σୱ,୲  and σ୤,୲ , respectively. 
Comparing to widely-used GARCH-Copula approach, our parameters σୱ,୲ and σ୤,୲ is model-free 
based on nonparametric method and the dependence coefficient ρ୲ is estimated by copula function. 
3.1 Copula and nonparametric model 

Assume both the logarithmic returns of the spot and futures are driven by below equations, 
r୩,୲ = μ୩,୲ + σ୩,୲ϵ୩,୲																(3.1) 

μො୩,୲ =
∑ Kୠ(r୩,୧ − r୩,୲)r୩,୧୬
୧ୀଵ
∑ Kୠ(r୩,୧ − r୩,୲)୬
୧ୀଵ

											(3.2) 
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σෝ୩,୲
ଶ =

∑ Kୠ(r୩,୧ − r୩,୲)r୩,୧
ଶ୬

୧ୀଵ
∑ Kୠ(r୩,୧ − r୩,୲)୬
୧ୀଵ

− μො୩,୲
ଶ 								(3.3) 

where k ∈ {s, f}. Equation (3.2) is well-known Nadaraya-Watson estimator of μ୩ , which is an 
consistent estimator and is applied in time series models by Chen and Gao (2007). Equation (3.3) is 
also kernel estimate of the volatility function appearing in Chen and Gao (2007) and Zheng (2008). 
Unlike parametric models, Equation (3.2) (3.3) propose a nonparametric estimate without assuming 
the function form. In this paper, Let the kernel Kୠ(u) be Gaussian, i.e., Kୠ(u) =

ଵ
√ଶ஠

exp	(−uଶ/
(2bଶ)), where b is a bandwidth. Like Scott (1992), Hong and Li (2005) and among others, chooseb =
r୸nିଵ/଺, where r୸ is the sample standard deviation of{r୧}୧ୀଵ୬ , and n is sample size. 

After modeling the marginal distribution, we need to specify the dependence between the 
logarithmic returns of the spot and futures. The asymmetric dependence in financial market is 
demonstrated by Longin and Solnik (2001), Ang and Chen (2002), Patton (2006), Hong, Tu and Zhou 
(2007) and Pan, Zheng and Chen (2014).  Therefore, we use the asymmetrized Joe-Clayton (SJC) 
copula, which nests symmetric one as a special case, modified by Patton (2006) to capture the 
asymmetric dependence of the spot and futures. The SJC copula is given below: 
Cୗ୎େ൫u୲, v୲หτ୲୙, τ୲୐൯ = 0.5൫C୎େ൫u୲, v୲หτ୲୙, τ୲୐൯ + C୎େ൫1 − u୲, 1 − v୲หτ୲୙, τ୲୐൯ + u୲ + v୲ − 1൯								(3.4) 

Where 

C୎େ൫u୲, v୲หτ୲୙, τ୲୐൯ = 1 − (1 − ((1 − (1 − u୲)ச)ିஓ) + (1 − (1 − v୲)ச)ିஓ − 1)ି
భ
ಋ)

భ
ಒ 

κ =
1

logଶ(2 − ߬௧௎)
 

λ = −
1

logଶ(߬௧௅)
 

Where τ୲୙ ∈ (0,1), τ୲୐ ∈ (0,1). The SJC copula has two parameters τ୲୙and τ୲୐, which measure 
the dependence of upper and lower tail dependence, respectively. Since the situation of economic 
change over time, then time-varying dependence should be rational at model specification. Thus, let 
tail dependence term τ୲୙ and τ୲୐ be dynamic, which similar to Patton (2006), 

τ୲୙ = Ξ൭α଴୙ + αଵ୙τ୲ିଵ୙ + αଶ୙
1
10

෍|u୲ିଵ − v୲ି୧|
ଵ଴

୧ୀଵ

൱											(3.5) 

τ୲୐ = Ξ൭α଴୐ + αଵ୐τ୲ିଵ୐ + αଶ୐
1
10

෍|u୲ିଵ − v୲ି୧|
ଵ଴

୧ୀଵ

൱											(3.6) 

Where Ξ(x) = ଵ
ଵାୣ୶୮	(ି୶)

 is the logistic function. Obviously, the values of dependence 

parameters τ୲୙ and τ୲୐ fall in (0, 1) at all times. For the equations (3.5)(3.6), the upper and lower tail 
dependence are driven by an AR(1) term and a forcing variable which we use formula ଵ

ଵ଴
∑ |u୲ିଵ −ଵ଴
୧ୀଵ

v୲ି୧| as. 
To sum up, the copula and nonparametric models are constructed by nonparametric marginal 

distribution and dynamic copula function. The joint distribution of returns on the spot and futures is 
given by: 

H൫rୱ,୲, r୤,୲หΘ, Ω୲ିଵ൯ = Cୗ୎େ൫F୰౩൫rୱ,୲หΘ, Ω୲ିଵ൯, G୰౜൫r୤,୲หΘ, Ω୲ିଵ൯หΘ, Ω୲ିଵ൯ 
= Cୗ୎େ൫F஫౩൫ϵୱ,୲หΘ, Ω୲ିଵ൯, G஫౜൫ϵ୤,୲หΘ, Ω୲ିଵ൯หΘ, Ω୲ିଵ൯							(3.7) 

Where F஫ౡ(ϵ) =
ଵ

୬ାଵ
∑ I(ϵ୩,୲ ≤ ϵ)୬
୧ୀଵ , and ϵ୩,୲ =

୰ౡ,౪ିஜౡ,౪
஢ౡ,౪

, k ∈ (s, f) 

Where Θ = (τ୲୙, τ୲୐), Ω୲ିଵ is information set at time t-1. Since Markov assumption, Ω୲ିଵ =
{rୱ,୲ିଵ, r୤,୲ିଵ}. Further, we let rୱ,୲ only depend on itself lag term rather than other variable lag term. 
This assumption is also appearing in Patton (2006). Cୗ୎େ	is SJC copula defined in Equation (3.4). Let 
F୰౩, G୰౩ , F஫౩  and G஫౩  be the conditional cumulative distribution function for rୱ,୲, r୤,୲, ϵୱ,୲ and ϵ୤,୲, 
respectively. I(A) denote an indicator function, i.e., I(A)=1 if even A holds, otherwise I(A)=0. 
μ୩,୲andσ୩,୲ are estimated by Equation (3.2) and (3.3), respectively. Then parameter σ୩,୲ corresponds 
to the standard deviation of optimal hedge ratio in Equation (2.1), and the dependent coefficient is 
defined by ρ = max	(τ୲୙, τ୲୐). 
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3.2 Dynamic copula-GARCH strategy: benchmark 

For the purpose of examine the performance of the nonparametric marginal distribution, we take 
the GARCH-class as a benchmark and let copula function be similar to Section 3.1. In numerous 
empirical works, the excess kurtosis and skewness styles are found in univariate distribution of many 
economic variables. And character of volatility cluster becomes common view for financial variables. 
Therefore, GARCH (p,q)-skewed t model could capture these characters mentioned above (see Patton 
(2004),  Patton(2006)). 

r୩,୲ = μ୩ +෍ϕ୩,୨r୩,୲ି୨ + η୩,୲										(3.8)
୮

୨ୀଵ

 

η୩,୲			 = ඥh୩,୲ϵ୩,୲																				(3.9) 
ϵ୩,୲~	skewed	t(ν, ϱ),			k ∈ (s, f)						(3.10) 

where term μ୩ +∑ ϕ୩,୨r୩,୲ି୨
୮
୨ୀଵ  capture the mean value of r୩ , where lag parameter p is 

generally determined by Akaike information criterion (AIC). From our empirical analysis, p=1 is 
superior to others.  The residual innovations ϵ୩,୲ follow a skewed student t distribution to model the 
skewness and kurtosis. Term h୩ is usually adopted to capture the phenomenon of volatility cluster. In 
this paper, we compare six most cited h୩ processes as follows: 

Model 1. The GARCH(1,1) model (see Bollerslev ,1986) 
h୩,୲ = ω୩ + α୩η୩,୲ିଵ

ଶ + β୩h୩,୲ିଵ									(3.11) 
Model 2. The Nonlinear ARCH(1,1) model (denoted NARCH) (see Engle and Bollerslev, 1986) 

h୩,୲ = ω୩ + α୩|η୩,୲ିଵ|ஔ + β୩h୩,୲ିଵ									(3.12) 
Model 3. The GJR(1,1) model (see Glosten, Jagannathan and Runkle, 1993) 

h୩,୲ = ω୩ + α୩η୩,୲ିଵ
ଶ + γ୩I(η୩,୲ିଵ < 0)η୩,୲ିଵ

ଶ + β୩h୩,୲ିଵ									(3.13) 
Model 4. The EGARCH(1,1) model (see Nelsen, 1991) 

log	(h୩,୲) = ω୩ + α୩(
หη୩,୲ିଵห

ඥh୩,୲ିଵ
− ඨ2

π
) + γ୩

η୩,୲ିଵ
ඥh୩,୲ିଵ

+ β୩log	(h୩,୲ିଵ	)								(3.14) 

Model 5. The Asymmetric GARCH(1,1) model (denoted AGARCH)(see Engle, 1990) 
h୩,୲ = ω୩ + α୩(η୩,୲ିଵ + θ୩)ଶ + β୩h୩,୲ିଵ									(3.15) 

Model 6. The VGARCH(1,1) model (see Engle and Ng, 1993) 
h୩,୲ = ω୩ + α୩(

η୩,୲ିଵ
ඥh୩,୲ିଵ

+ θ୩)ଶ + β୩h୩,୲ିଵ									(3.16) 

Following  Hansen (1994), the density of skewed student t distribution is given by: 

skewed	t(ϵ|ν, ϱ) =

⎩
⎪
⎨

⎪
⎧bc(1 +

1
ν − 2

(
bϵ + a
1 − ϱ

)ଶ)ି
ಕశభ
మ ,					ϵ < −ܽ/ܾ

bc(1 +
1

ν − 2
(
bϵ + a
1 + ϱ

)ଶ)ି
ಕశభ
మ ,					ϵ ≥ −a/b

 

where2 < ߥ < ∞ and −1 < ߷ < 1. And the constant a, b and c are defined as follows: 

a = 4ϱc ൬
ν − 2
ν − 1

൰ , bଶ = 1 + 3ϱଶ − aଶ, c =
Γ((ν + 1)/2)

ඥπ(ν − 2)Γ(ν/2)
 

The skewed student's t distribution nests the student's t distribution by letting ϱ = 0. Parameter 
ϱ measure the degree of skew to zero, i.e.,  ϱ > 0 means the right skewness, and vice-versa when 
ϱ < 0. And parameter ν capture the kurtosis of density. 

Further, we need to check whether model (3.11) is suitable for the logarithmic returnsr୩,୲. The 
intuitive judgement is that if model (3.11) is appropriate, then the probability integral transforms of 
residual innovation ϵ୩,୲ will be independent and identical distribution, i.e., Uniform (0,1). This results 
is powerful, is rigid proven by Rosenblatt (1952), and is applied to calculate density forecasts (Diebold, 
Gunther and Tay, 1998; Hong, 2002) and construct statistics for model specification (Hong and Li, 
2005; Bai, 2003; Corradi and Swanson, 2006). To our knowledge, most of paper take the test of null 
hypothesis of i.i.d.U(0,1) apart. i.e., apply Ljung-Box Q-test for first moment and Engle test for higher 
moment to check independent and identical distribution, and the Kolmogorov-Smirnov (K-S) statistic 



Hedging Strategy Using Copula and Nonparametric Methods: Evidence from China Securities Index Futures 
 
 

111 
 

for standard Uniform distribution, respectively. The existing problem of apart procedure is that it is 
easy to miss the situation of non-i.i.d.U(0,1). Particularly, the critical value of Kolmogorov-Smirnov 
statistic cannot be adopted directly since this statistic is not parameter estimation free but the 
asymptotic distribution of K-S statistic does not take this into account. Thus, Hong and Li (2005) 
propose a Nonparametric omnibus test to check the joint hypothesis of independent and identical 
distribution and Uniform (0,1). As we all known, there has not been paper using nonparametric 
omnibus test  (Hong and Li, 2005) to check the GARCH class for building copula model so far. In 
this paper, we sketch the nonparametric omnibus test proposed by Hong and Li (2005). For univariate 
series {Rத}தୀଵ୬ , let g୨(rଵ, rଶ) be the joint density of  {Rத, Rதି୨}. The spirit of nonparametric omnibus 
test is to comparing the estimator g఩ෝ(rଵ, rଶ) ofg୨(rଵ, rଶ)with 1, which is the product of two i.i.d. 
Uniform (0,1). The joint density g୨(rଵ, rଶ) is estimated through kernel method given below: 

g఩ෝ(rଵ, rଶ) =
1

n − j
෍ Kୠ

ୌ(rଵ, Rத)
୬

தୀ୨ାଵ

Kୠ
ୌ(rଶ, Rதି୨) 

Where whereKୠ
ୌ(rଵ, r_2) is a boundary modified by Hong and Li (2005). Then Hong and Li 

(2005) construct a statistics Q෡(j) as follows: 

Q෡(j) =
ቂ(n − j)b∫଴

ଵ∫଴
ଵൣg఩ෝ(rଵ, rଶ) − 1൧ଶdrଵdrଶ − bAୠ

଴ ቃ

V଴
ଵ/ଶ 		,			݆ = 1, 2,⋯ 

where	Aୠ
଴  and V଴ are the non-stochastic centering and scaling parameters defined below: 

Aୠ
଴ = ቂ(bିଵ − 2)∫ିଵ

ଵ kଶ(u)du + 2∫଴
ଵ∫ିଵ

୴ k୴ଶ(u)dudvቃ
ଶ
− 1 

V଴ = 2 ൤∫ିଵ
ଵ ቂ∫ିଵ

ଵ k(u + v)k(v)dvቃ
ଶ
du൨

ଶ
 

Where k୴(x) = k(x)/∫ିଵ
୴ k(y)dy. Under {Rத}தୀଵ୬  is i.i.d. Uniform (0,1), Hong and Li (2005) 

show that,  
Q෡(j) → N(0,1)	, as	n → ∞. 

As mentioned in Hong and Li (2005), it is the most important and information when j=1. Thus, 
we choose j=1 to test the i.i.d. Uniform (0,1) jointly2.  

 
4. Application 

Empirical analysis is investigated in this section. We calculate the optimal hedge ratio for CSI 
300 index futures using copula and nonparametric methods we have just described. To check the 
robustness of these results, robust test is also considered. 
4.1 Optimal hedge ratio for CSI 300 index futures 

We focus on the daily data from wind database containing the prices of the China Securities 
Index 300 (CSI 300) spot and index futures, from 19 April, 2010 to 20 April, 2012, yielding 487 
observations. In order to check the robustness of our results, we take the CSI 100 and CSI 200, which 
consists of the largest 100 stocks in CSI 300 and the rest of CSI 300, as substitution for CSI 300. The 
main reason for choosing CSI 100 and CSI 200 is that there exist many funds based on these two 
indices in China Stock Exchange market3. Figure 1 plots the prices and returns of the CSI 300 index 
futures, CSI 300 index, CSI 100 index and CSI 200 index, respectively. Figure 2 depicts the 
correlations between CSI 300 and CSI 300 index futures are higher when the market goes down than it 
goes up, which is consistent with Ang and Chen (2002)'s findings in the stock market. But our ranging 
from 0.82 to 0.96 is smaller than theirs. 

 
 

                                                             
2 Notes: As shown by Hong and Li (2005) in P46, if model specification is wrong, then statistic Q෡(j) → ∞. 
Unlike traditional two-sided test, Q෡(j) statistic is upper-tailed test since negative values of Q෡(j) statistic appear 
only under null hypothesis as n → ∞. 
3 Now, there are only two funds based on CSI 300, launched on 7 May, 2012. For more detail see 
www.csindex.com.cn 
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Figure 1. The first column depicts the prices for CSI 300 index futures, CSI 300 index, CSI 100 index 
and CSI 200 in sequence; and the second column shows the returns. 

 
Figure 2. Correlations between returns on CSI 300 index and CSI 300 index futures. The horizontal 
axis is the quantile, and the vertical one is the value of correlation under that both exceed that quantile. 
Correlations for CSI 100 index and CSI 200 index with CSI 300 index futures, respectively, not be 
exhibited, but available upon request. 
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Table 1 provides Descriptive statistics for the data. Means of the four indices returns exhibit 
negative, and small relative to counterpart standard deviation. The higher moment shows the four time 
series are negative skewness and excess kurtosis. The value of Jarque-Bera test is larger enough to 
reject the normality hypothesis at significant level 1%. The Ljung-Box Q test indicates there is serial 
autocorrelation in all time series and autoregression term should be included in mean processes. The 
augmented Dickey-Fuller test for unit root shows that the null hypothesis of having a unit root is 
rejected at the significant level 1%, indicating that these time series are stationary and can be modeled 
directly. 

Table 1. Description of CSI 300 Index and CSI 300 Index Futures 
 Index futures CSI300 CSI100 CSI200 
Mean(%) -0.054 -0.050 -0.038 -0.040 
Std dev. (%) 1.522 1.483 1.444 1.656 
Skewness -0.164 0.306 -0.163 -0.309 
Kurtosis 4.831 4.368 4.366 3.958 
JB test 70.1910*** 45.5580*** 40.0097*** 26.3621*** 
ADF test -23.903** -22.656*** -22.968*** -21.388*** 
Correl -------- 0.975 0.968 0.926 

JB test denotes Jarque-Bera test of the null hypothesis that the sample comes from a normal distribution. ADF 
test assesses the null hypothesis of a unit root in a univariate time series. Correl measures the correlation for CSI 
300 index, CSI 100 index and CSI 200 index with CSI 300 index futures. *** indicates the rejection at 
significant level 1%. 

 
Table 2 and Table 3 present the estimation of types of GARCH models (AR(1)- GARCH (1,1), 

AR(1)-NARCH(1,1), AR(1)-GJR(1,1), AR(1)-EGARCH(1,1), AR(1)-AGARCH(1,1), 
AR(1)-VGARCH (1,1)) for CSI 300 index futures data and CSI 300, respectively. There are common 
features among various GARCH models. The log-likelihood value is almost the same, implying no 
GARCH model is clearly better than others. Relative to ARCH parameter α, most of the GARCH 
parameter β is larger up to 0.9, indicating that the volatility is high persistent dependence. Figure 3 
and Figure 4 also depicts the high persistent behavior for various GARCH models, while nonparamtric 
volatility performs low persistent. 

 
Table 2. Coefficient of CSI 300 index futures under GARCH-class models 

 GARCH NARCH GJR EGARCH AGARCH VGARCH 
ૄ 0.0438 0.0429 0.0450   0.0552   0.0513 -0.0438 
૖ -0.0589 -0.0591 -0.0590 -0.0572 -0.0612 -0.0619 
૑ 0.0311 0.0604 0.0297 0.0165 0.0100 0.0370 
હ 0.0283 0.0078 0.0257 0.0679 0.0258 0.0372 
઺ 0.9590 0.9520 0.9600 0.9867 0.9667 0.9628 
઼ --- 3.0258 --- --- --- --- 
ી --- --- 0.0043 -0.0234 0.5747 -0.3890 
૗ 0.0391 0.0441 0.0386 0.0290 0.0346 0.0406 
ૅ 4.5629 4.4791 4.5473 4.4963 4.5473 4.9530 

 863.6359 862.1388 864.2407 862.4758 861.7935 862.4942 ܓܑܔ܏ܗܔ
 

Table 4 is model specification using Hong and Li (2005)'s statistic. The second column is 
statistics value of Hong and Li (2005)'s statistic for CSI 300 index futures and CSI 300 index. They 
are both negative, and pass the test at the significant level 5% according to the rule of Hong and Li 
(2005)s statistics. However, from column 3 to column 7, all of the statistics value is positive, which 
differ from nonparametric case, and All GARCH-class models are fall at significant level 10%. In 
particular, all GARCH-class models are also fall for CSI 300 data at significant level 1%. Therefore, 
modeling the marginal distribution using GARCH-class models faces the risk of model specification. 
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Table 3. Coefficient of CSI 300 index under GARCH-class models 
 GARCH NARCH GJR EGARCH AGARCH VGARCH 

ૄ 0.0330  0.0370  0.0358   0.0153  0.0417  -0.0355 
૖ 0.0190  0.0186  0.0175  0.0202   0.0207  -0.0199 
૑ 0.0355 0.6409 0.0278 1.1521 8.8450e-4 5.5568e-4 
હ 0.0157 0.1627 0.0027 -0.1970 0.0147 0.0235 
઺ 0.9671 0.6317 0.9742 -0.5082 0.9773 0.9765 
઼ --- 0.0501 --- --- --- --- 
ી --- --- 0.0181 0.0435 0.9999 0.0181 
૗ -0.0058 4.58E-04 -0.0053 0.013 -0.0116 -0.0048 
ૅ 6.8313 4.4791 6.6696 6.3101 6.7171 6.943 

 862.875 862.625 863.7231 863.4197 865.9224 863.8759 ܓܑܔ܏ܗܔ
 

Table 4. Hong and Li's(2005) test for model specification 
CSI300 Nonparam GARCH NARCH GJR EGARCH AGARCH VGARCH 
Futures -2.7983 1.3866* 1.5238* 1.3789* 1.3194* 1.3608* 1.9027&** 
Spot -0.6463 4.5092*** 3.9127*** 4.5398*** 2.5009*** 4.6315**** 4.5616*** 

Notes: Hong and Li (2005)'s statistic is upper-tail test. ***, **, * denote the rejection at significant level 1%, 5% and 10%, 
respectively. 
 

Figure 5 describes the time-varying tail dependence based on SJC-copula and dynamic optimal 
hedge ratios in Figure 6. Figure 5 shows the tail dependence for different marginal distribution. The 
time-varying tail dependence appears steady during the period. The critical reason may be our sample 
is not enough large and the integrated market trend to fall since 2008 in China security market. From 
the Nonparametric Tail Dependence figure, the lower tail dependence is larger than the upper one, 
which is consistent with Ang and Chen (2002)'s findings. However, AR(1)-NARCH(1,1) and 
AR(1)-VGARCH(1,1) marginal distribution exhibit upper tail dependence is larger than lower one, 
which confirms nonparametric marginal distribution is superior to GARCH-class ones. Figure 6 
depicts the optimal hedge ratio. It is similar to volatility picture in Figure 3 and Figure 4. Obviously, 
owing to the tail dependence is steady. Thus, the optimal hedge ratio only depends on the counterpart 
volatility. 
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Figure 3. From top to bottom, the volatility of CSI 300 index is estimated by nonparametric model, 
AR(1)-GARCH(1,1), AR(1)-NARCH(1,1), AR(1)-GJR(1,1), AR(1)-EGARCH(1,1), 
AR(1)-AGARCH(1,1), AR(1)-VGARCH(1,1). 
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Figure 4. From top to bottom, the volatility of CSI 300 index Futures is estimated by nonparametric 
model, AR(1)-GARCH(1,1), AR(1)-NARCH(1,1), AR(1)-GJR(1,1), AR(1)-EGARCH(1,1), 
AR(1)-AGARCH(1,1), AR(1)-VGARCH(1,1). 
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Figure 5. The dynamic tail dependence is estimated by SJC-copula, but marginal distribution is set by 
nonparametric model, AR(1)-GARCH(1,1), AR(1)-NARCH(1,1), 
AR(1)-GJR(1,1),AR(1)-EGARCH(1,1), AR(1)-AGARCH(1,1), AR(1)-VGARCH(1,1) from top to 
bottom. 

 
Table 5 presents the hedge ratio and hedging effectiveness. Mean of hedge ratio of nonparametric 

marginal distribution is larger than others as well as the standard deviation, ranging from 0.3104 to 
1.5501. One may argue that the larger the standard deviation, the more transaction cost. Indeed, but 
transaction cost is less in futures market than one in stock market. Anyway, the transaction cost should 
be considered but left to a future research. The last column shows the hedging effectiveness. The value 
of nonparametric SJC-copula is larger than other marginal distributions, implying our approach 
dominates all GARCH-class models and our nonparametric marginal distribution to capture the 
behavior of the univariate is more sufficient. And GARCH-class models may exist the risk of model 
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misspecification which just shown in Hong and Li (2005)'s statistics and tail dependence behavior in 
Figure 5. 
 
Figure 6. The dynamic optimal hedge ratios is estimated by equation \ref{HE}, and marginal 
distribution is set by nonparametric model, AR(1)-GARCH(1,1), AR(1)-NARCH(1,1), 
AR(1)-GJR(1,1), AR(1)-EGARCH(1,1), AR(1)-AGARCH(1,1), AR(1)-VGARCH(1,1) from top to 
bottom. 

 
Table 5. Hedge ratio and hedging effectiveness 

Marginal setting Mean Std Min Max E 
Nonparametric 0.8826 0.1436 0.3104 1.5501 0.9664 
GARCH 0.8482 0.0532 0.7151 0.9548 0.9365 
NARCH 0.8705 0.1224 0.5986 1.0674 0.9307 
GJR 0.8584 0.0645 0.6568 0.9956 0.9392 
EGARCH 0.8649 0.1328 0.451 1.2117 0.9296 
AGARCH 0.8533 0.0506 0.7003 0.9453 0.9377 
NAGARCH 0.8719 0.0317 0.7318 0.9328 0.9438 

Notes: E is calculated by equation 2.2, and the closer the E get to 1, the more sufficient hedging effectiveness is 
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4.2 Robust test 
To check whether copula and nonparametric models are robust, we substitute CSI 100 index and 

CSI 200 index for CSI 300 index, which many funds have been exchanged based on them in China 
security market. 

We neither present the estimation of various GARCH-class models for CSI 100 index and CSI 
200 index, nor is figures of volatility, tail dependence and hedge ratios. But all the related results are 
available on request. From Table 6, the nonparametric marginal distribution is not rejected at 
significant level 5%. However, GARCH-class models are rejected at significant level 5%, except 
AR(1)-EGARCH(1,1) marginal distribution for CSI 200 index, which also imply nonparametric 
technique is more suitable for modeling marginal distribution than GARCH-class models. 

 
Table 6. Hong and Li's(2005) test for model specification 

CSI Nonparam GARCH NARCH GJR EGARCH AGARCH VGARCH 
100 -0.5812 2.9976***  2.7958 

*** 2.9903** * 2.7939 *** 3.0199 *** 3.0635 *** 

200 0.6480 2.6512***  2.5644*** 2.2403***  1.1265 *** 2.2626 *** 1.8246 *** 
Notes: see Table 4. 
 

Table 7 presents the hedging effectiveness for CSI 100 index and CSI 200 index, respectively. 
The main results are same as CSI 300, where the mean of hedge ratio for nonparametric marginal 
distribution is larger than others, as well as standard deviation. The hedging effectiveness of 
nonparametric marginal distribution is the closest to 1, indicating the degree of hedge is the best. 
Comparing to the CSI 300 index, the value of hedging effectiveness tend to be small. The solution 
should be found in Table 1. The value of correlation with CSI 300 index futures is CSI 300 index, CSI 
100 index and CSI 200 index in sequence sorted by descending. It also reveals that traded underlying 
asset pay a critical role in hedging effectiveness. Fortunately, two funds based on CSI 300 index are 
launch on 7 May, 2012 that will improves efficiency in China stock market. 

 
Table 7. Hedge ratio and hedging effectiveness 

Marginal setting Mean Std Min Max E 
CSI 100 Index 

Nonparametric 0.8826 0.16 0.3177 1.7473 0.9493 
GARCH 0.8249 0.0428 0.7265 0.9095 0.9283 
NARCH 0.83 0.117 0.5706 1.0195 0.9143 
GJR 0.8218 0.0432 0.7109 0.9165 0.9242 
EGARCH 0.79 0.1376 0.5307 1.3427 0.9079 
AGARCH 0.8256 0.0439 0.7113 0.9241 0.9245 
VGARCH 0.8316 0.0233 0.7399 0.8693 0.9272 

CSI 200 Index 
Nonparametric 1.0209 0.2951 0.2814 2.4118 0.9098 
GARCH 0.87 0.0566 0.7061 0.9778 0.8395 
NARCH 0.8695 0.0651 0.6842 0.9836 0.8381 
GJR 0.8884 0.0894 0.6369 1.0802 0.8467 
EGARCH 0.892 0.1539 0.5243 1.2961 0.8459 
AGARCH 0.889 0.0917 0.7012 1.0878 0.8437 
VGARCH 0.9167 0.0857 0.7407 1.1825 0.8546 

Notes: see Table 5. 
 
5. Conclusions 

Nonparametric technique have rapid developed in many fields of statistics and econometrics. 
Especially, there exists many concerns nonparametric method in financial literature. In this paper, we 
propose a copula and nonparametric models to estimate the parameters of optimal hedge ratios. I.e., 
the marginal distribution is modeled by nonparametric technique and bivariate is linked by Patton 
(2006)'s SJC-copula. To highlight this method, we use our approach to do an empirical analysis for 
CSI 300 index futures. Meanwhile, comparing with most cited GARCH-class models, the findings 
show that our approach obtains the best hedging effectiveness. Hong and Li (2005)'s statistic shows 
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that contrary to the popular parametric models such as GARCH model, nonparametric technique can 
be a robust tool for model specification of financial data. 
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