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ABSTRACT

An analytical dynamic model for the return distribution of stocks is presented, based on the conservation equation of return-dependent shares of a stock. 
Two types of a return distribution are established: real and virtual. The real return distribution characterizes the current return distribution of shares 
of a stock, while the virtual return distribution is derived from traded price data. The main difference between both is that the real return distribution 
requires the mean holding time of shares. According to the theory, the real return distribution is stationary, featuring a double exponential distribution 
near mean return with power-law tails. In contrast, the virtual return distribution evolves over time and includes an additional Gaussian component 
around mean return. Comparison with empirical data validates the model’s applicability to stocks satisfying the model’s conditions.
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1. INTRODUCTION

The stock market is a complex financial system characterized by 
non-linear interactions among traders and numerous unpredictable 
external factors. This work establishes an analytical return 
distribution derived from the dynamics governing the return of 
shares of a stock. The price return is defined as:
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Where t indicates time, p(tp) is the purchase price at time step tp 
and p(t) is the current price. For small returns the relation can be 
also written as:1
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Returns are fundamental to asset pricing, portfolio management 
and financial risk analysis (Mantega and Stanley. 2000; Bouchaud 

1 Dividends are neglected.

and Potters, 2000; Malevergne and Sornette, 2006). Bachelier 
introduced the first model of stock returns, describing their 
evolution as an uncorrelated random Brownian walk (Bachelier, 
1900). The central limit theorem suggests that the distribution of 
returns should therefore take the form of a Gaussian. However, 
Mandelbrot’s pioneering analysis of cotton prices revealed 
that returns are non-Gaussian (Mandelbrot, 1963). He also 
found another interesting property: “time scaling.” That is, the 
distributions of returns for various choices of a scaling time Δt, 
with Δt=t-tp, ranging from 1 day up to 1 month have similar 
functional forms. Characteristics are a stable functional form and 
pronounced tails. Mandelbrot proposed that return distributions 
are consistent with a Lévy stable distribution (Lévy, 1937).

In the late 20th century, advancements in computer technology 
provided researchers with access to vast amounts of stock market 
data. This progress enabled precise statistical analysis of financial 
asset returns (Mantega and Stanley, 1994; Mantega and Stanley, 
2000). Their research demonstrated that the central region of 
the return distribution can be described using a truncated Lévy 
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stable symmetric distribution or a Student t-distribution (Gu 
et al., 2008). The tails have the form of a power-law distribution 
(Plerou and Stanley, 2008; Stanley et al., 2008; Harris, 2017; 
Jacquier and Torricelli, 2020; Liu and Zheng, 2022). The universal 
nature of this return pattern is particularly remarkable, given the 
significant differences among financial markets. Financial returns 
are also a significant focus in financial mathematics and computer 
simulations (e.g. De Domenico et al., 2023; Li et al., 2023).

The dynamic model presented here is based on the conservation 
equation of the number of shares in the possession of stockholders 
n(t,r) at time step t and return r. The time evolution is based on 
the following assumptions:
(i) The total number of issued shares n  can be treated as constant 

for the time of investigation ΔT.
(ii) Shares are sold after an average holding time τ. Selling events 

occur independent of the current return and proportional to 
their number n(t,r). When a share is sold, its return is reset to 
zero.

(iii) For small returns the return of a share performs small random 
jumps on the return scale denoted as the Brownian diffusion 
regime. This behaviour can be characterized by a constant 
diffusion parameter D0.

(iv) For large returns |r| > rc, where rc is called crossover return, the 
diffusion parameter depends on current return D(r), denoted 
as multiplicative Brownian diffusion regime. The diffusion 
parameter D(r) is proportional to r2.2

(v) Average return of a stock evolves with a constant rate v.

The evolution of the return of a share can be understood as follows: 
When a share is purchased at t=tp the return is with (2) zero. During 
the holding time τ it evolves randomly on the return scale. For small 
returns governed by additive Brownian motion, for large returns 
|r| > rc by multiplicative Brownian motion. The chance that it is 
sold with return r is proportional to n(t,r) and occurs with rate 1/τ. 
When the share is sold, the return value instantly resets to r=0, 
and the random evolution begins anew. This paper considers two 
types of return distributions. The first, referred to as the real return 
distribution, describes the stationary return distribution of shares 
in the possession of the shareholders. The second, termed virtual 
return distribution, is derived from the stock’s price evolution. 
It ignores the fact that the return is reset to zero after τ. Since 
Mandelbrot (1963), studying the virtual return distribution has 
become standard practice. Both distributions are established in 
Chapter 2. Chapter 3 compares the model with empirical stock 
data, followed by a discussion in Chapter 4.

2. THE THEORY

2.1. The Real Return Distribution
The presented theory applies to a stock traded on a stock market 
and analysed over the time of investigation ΔT. Based on 
assumption (i) the total number of issued shares n  is a constant 
in this period. Each share of the stock is assigned with the current 
price p(t) and current return r(t), related by (1) and (2). The 

2 That D(r)~r2 follows from the Fokker-Planck-equation of the corresponding 
multiplicative Langevin equation.

function n(t,r) indicates the number of shares in the possession of 
shareholders at time step t with current return in the interval r and 
r+dr. Initially, all shares have zero return when issued at t=t0. The 
initial condition can thus be written as:3

n t r n r( , ) ( )0 = δ  (3)

The total number of shares can be obtained from:4

n n r dr= ( )
−∞

∞

∫ �  (4)

The return distribution P(t,r) of shares is defined by the probability 
density function (pdf) of the number of shares with return r at 
time step t by:
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n
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The average return is:

r t P t r r dr( ) ( , )=
−∞

∞

∫  (6)

And the variance:
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While σ(t) is the standard deviation.

The return dynamics of an ensemble of shares is given by the 
following conservation equation:5
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The time-dependent evolution of n(t,r) is driven by three 
processes represented by the three terms on the right-hand side 
of this equation. The first two terms model the sales and purchase 
processes of shares at trading events. The number of shares in 
the possession of shareholders n(t,r) increases with purchase rate 
d(t,r).6 The number of shares decreases with the selling rate s(t,r). 
The final term describes the time evolution of the shares on the 
return scale while they are in possession of the shareholders, based 
on the assumptions (iii)-(v).

According to assumption (ii) the selling rate is independent of 
current return and proportional to their number n(t,r). Sales events 
occur at rate 1/τ, where τ indicates the average time of ownership 
of the shares. The selling rate has the form:

s t r n t r, ,( ) = ( )1

τ
 (9)

The total number of shares is determined by:

dn
dt

d t s t




= ( ) − ( )  (10)

3 The Dirac delta function is a distribution of the form: δ(r-r’)=∞ for r=r’ 
and 0 for r≠r’ ,normalized to one.

4 A tilde over variables indicates total numbers.
5 Such a relation is known as a convection-diffusion equation. 
6 The function d(r) indicates demand.
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With the total rates:

d t d t r dr( ) = ( )
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∞

∫ ,  (11)

and

s t s t r dr( ) = ( )
−∞

∞

∫ , �  (12)

Inserting (9) in (12) yields with (4) for the total selling rate:

 s n=
1
τ

�  (13)

Since the total number of shares n  is constant it follows from 
(10):



s d=  (14)

Purchase events are linked to a reset of a share’s return to zero. 
Therefore, purchased shares start their return evolution at r=0. 
The demand rate can therefore be modeled with (13) and (14) as:

d r n r( ) = 1
τ

δ ( )  (15)

While the Dirac delta function ensures that the shares start their 
evolution at r = 0.

The last term in (8) accounts for the time evolution of shares on 
the return scale. The model assumes that shares undergo a random 
walk, with a mean flow characterized by the velocity v. The rate 
of motion j(t,r) can thus be formulated as:

j t r v D r
n t r
r
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Where the mean velocity is defined by:

v r
=
τ

 (17)

The diffusion process is described by the diffusion parameter D(r). 
Based on assumptions (iii) and (iv) D(r) can be modelled as the 
sum of two terms:

D r D D r
r c
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2
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The diffusion parameter of multiplicative Brownian motion D’ can 
be given as a multiple of the diffusion parameter D0 as:

D’ = εD0 (19)

With the free parameter ε. Then D(r) becomes:
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Where r rc c
2 2= ' / ε . While for |r| << rc, the second term in (20) 

can be neglected it becomes dominant for |r| >> rc. The return rc 
marks therefore the crossover between additive and multiplicative 
Brownian diffusion regimes.

The return dependent evolution of the number of shares (8) can 
be written with (9), (15), (16) and (20) as:
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Scaling (21) by the total number of shares n , multiplying by τ and 
applying (5) and (17) a partial differential equation for the 
evolution of the real return distribution Pr(t,r) can be established:
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Where:

k D= 0τ  (23)

For mathematical simplicity the model of the real return 
distribution is confined to a time interval ΔT where r 1 . The 
impact of the evolution of the mean return can then be neglected. 
The stationary solution of (22) for r≠0 becomes:

P r k d
dr

r dP r
drr
r( ) = 








2 γ ( )
( )

 (24)

Under the condition that the crossover between both diffusion 
regimes is small, the stationary return distribution can be 
approximated by:
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For |r|<<rc, the stationary return distribution (24) can be 
determined for r≠0 and γ(r)=1 from:

P r k d P r
d rr
r'
'( )( ) ≅ 2

2

2
 (26)

The solution is given by:

P r Ae Ber

r
k

r
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−
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With the free parameters A and B. The distribution can be 
normalized only if B=0 for r>0 and A=0 for r<0. For a continuous 
distribution is A=B and therefore:

P r A
r
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For |r| >> rc, the stationary return distribution (24) becomes:
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The differential equation can be solved with the ansatz:

P r Q
r

r ''( ) = +α 1
 (30)
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Introducing the free parameters Q>0 and α>0. The application 
of (30) in (29) yields:

P r k
r

k
r

P rr
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2
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2
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The ansatz is valid if:
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For the considered range |r| >> rc, the last term in (32) can be 
neglected compared to the first. In this approximation (32) can be 
used to determine the crossover return:

r kc ≅ +( )α α1 1/  (33)

To ensure a continuous distribution at rc we demand:

P r P rr c r c' ''�( ) = ( )  (34)

The stationary real return distribution (25) can then be 
approximated with (28) and (30) by:
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The free parameter can be obtained from (34):
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And the normalization condition:

A
k r k r

k
c c

=
+ −






 −








1

2 2
α

exp

 (37)

The stationary real return distribution (36) depends on two free 
parameters k and α. It is composed of a double exponential 
distribution for small returns |r| ≤ rc, and a power-law tail resulting 
from multiplicative Brownian motion for large returns |r| > rc.

2.2. The Virtual Return Distribution
The real return distribution Pr(r) is not directly observable, as it 
requires all stockholders to disclose the current return on their 
shares to determine the mean holding time τ. However, traded price 
data p(t) from the sales process of shares are readily available. 
A virtual return distribution Pv(t,r) can be established from the 
price data for a time interval Δt, where Δt is referred to as scaling 
time. The return (2) is in this case evaluated from the sold price 
at time step t0 and a later time step at t0+Δt according to:

r t
p t t
p t

∆
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While the time evolution is determined by:

t = t0 + Δt (39)

The scaling time Δt is a period that serves as an analogy for the 
time of ownership τ. Thus:

Δt = τ (40)

Hence, from (23) follows for the virtual return distribution:

k D t= 0∆  (41)

The analysis of the return based solely on the price evolution 
implies that the reset of the return at purchase events is ignored. 
Consequently the differential equation (22) must be rewritten for 
the virtual return distribution as:
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Where the first term in (22), which accounts for the shift of the 
return to r = 0 at purchase events, is omitted. The solution of (42) 
is derived in Appendix A. The virtual return distribution can be 
approximated as:
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Where the free parameters F’, C’ and A’ are determined in 
Appendix A by (A13), (A16) and (A17).

The model suggests that the virtual return distribution separates 
into three regions, symmetric around r . A normal distribution is 
centered near mean return, followed by an exponential decay and 
a Pareto tail for large returns. The virtual return distribution 
contains three free parameters: r , k, α. The range of the normal 
distribution increases with k. Since (41) implies that k t~ ∅ , 
(43) is not stationary, but a function of the scaling time. For Δt→∞, 
the normal distribution around the center dominates the virtual 
return distribution.

For sufficiently small k the normal distribution becomes negligible, 
and the virtual return distribution (43) simplifies to a shifted 
Laplace distribution:

P r ev

r r

( ) ≅
−

−
1

βσ

β
σ  (44)

With:

β = 2  (45)

Where the standard deviation σ can be obtained from the empirical 
data by (A24). Introducing the scaling:

R r r
k

=
−  (46)



Kaldasch: The Return Distribution of Stocks: A Dynamic Model

International Journal of Economics and Financial Issues | Vol 15 • Issue 3 • 202554

With the condition:
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The virtual return distribution (43) becomes:
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Where (33) leads with (46) to:

RC = +( )α α1 1/  (49)

While:
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and:

F A R eC
RC'' ''= + −α 1  (51)

With the scaled return R, the virtual return distribution becomes 
independent of Δt. The only free parameter is α.7

3. COMPARISON WITH EMPIRICAL DATA

To demonstrate the applicability of the model, the virtual return 
distribution of a stock is analysed. To be applicable, the model 
conditions (i)-(v) must be met. It implies that the parameters v, 
D0 and α can be treated as constants. The standard deviation of a 
diffusion process can be written with (A24) for empirical data as:

σ = 2D t∆  (52)

Where D is denoted as the apparent diffusion parameter. If D is 
constant, the standard deviation of the empirical data evolves as 
σ ~ ∆t . The model parameter D0 can then be obtained from 
(A26). The relation (17) suggests with (40) that the parameter v 
is constant if r t~ ∅ . The only free parameter α must be fitted to 
the empirical return data.

An example, that satisfies the model conditions is the MasterCard 
(MA) stock traded at the NYSE. The historical price data are 
obtained from Yahoo finance historical data.8 Investigated is the 
time interval ΔT=4403 days spanning from 25.5.2006 to 
20.11.2023.9 Displayed in Figure 1 are the standard deviation and 
the mean return (insert). The mean return r t( )∅  can be well 
approximated by a linear function (solid line) with v≅1.05×10-3 

7 In general, the parameter α may vary with Δt and differ between positive 
and negative returns. This case is not addressed here.

8 Stock splits are accounted for in the empirical price data.
9 https://finance.yahoo.com/

per day. The standard deviation σ(Δt) follows a square root 
dependence with D≅1.65×10-4 per day. The model is applicable 
to the evolution of this stock at least for Δt≤60 days.10 The relation 
(A26) yields D0≅7.7×10-5 per day. Empirical studies suggest that 
the parameter α is not generally independent of Δt (Gopikrishnan 
et al., 1999). Following Alfonso et al. (2012) an average parameter 
α can be given by α≅1.6.

Displayed in Figures 2-4 are the empirical return distributions (dots) 
together with the virtual return distribution (43) (solid line) in a 
semi-log-plot for Δt=5 days, Δt=20 days and Δt=60 days. The 
boundaries of the normal distribution, given by│r│=k, are indicated 
by dash-dot-lines, where k is obtained from (41). Between the dash-

10 This is not generally the case for stocks traded on the NYSE.

Figure 2: Displayed are the empirical return data for the stock MA for 
Δt=5 days (dots) with σ=4.43×10-2 and r =5.12×10-3. The solid line 
represents the virtual return distribution (43) with k=1.96×10-2 and 

α=1.6. Also displayed is the corresponding normal distribution (dotted 
line) and Laplace distribution (dashed line). Indicated is the normal 

distribution regime (│r│=k) (dash-dot-lines) and the crossover return 
(dotted lines) with rc=4.0×10-2

Figure 1: Displayed are the empirical data of the standard deviation 
σ(Δt) (dots) as a function of the scaling time Δt for the stock MA 

(MasterCard) traded at the NYSE. The solid line is (52) with 
D≅1.65×10-4 per day. In the inset, the empirical data for the mean 

return r  (Δt) (dots) are shown as a function of scaling time Δt. The 
solid line represents (17) applying (40) with v≅1.05×10-3 per day
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dot-lines and dotted lines the return distribution can be described 
by an exponential distribution. For │r│≥rC, the distribution exhibits 
a power-law tail, while rc is indicated by dotted lines. Also shown 
are the corresponding Laplace (dashed line) and normal distribution 
(dotted line) with equivalent σ and r . While the Laplace distribution 
predicts a pronounced central peak at mean return, the normal 
distribution is much broader than the empirical data. Both are not 
appropriate to describe the empirical return distribution.

Figure 5 displays the empirical return data scaled according to 
(46) for the considered scaling times. As suggested by the model, 
the scaled empirical data collapse onto a single distribution. For 
this stock the scaled virtual return distribution (48) can be well 
described with α=1.6 (solid line). Previous studies have proposed 
alternative approaches for fitting the return distribution, such 
as using a truncated Lévy stable symmetrical distribution or a 
Student-t distribution (Mantega and Stanley (1994), Gu et al., 

2008). For comparison, a Student-t distribution with degree of 
freedom n=2 is displayed in Figure 5 (dotted line), providing a 
similar good fit to the scaled empirical return data.

4. DISCUSSION AND CONCLUSION

The paper introduces a dynamic model for the return distribution 
of stocks, based on the conservation equation of return-dependent 
shares. The model suggests that stock returns satisfying the model 
conditions (i)-(v) show next to mean motion an additive Brownian 
random walk for small returns and multiplicative Brownian motion 
for large returns. The model derives two return distributions: real 
and virtual. The real return distribution accounts for the reset of 
a share’s return to zero associated with sales events. It features 
a symmetric double exponential distribution around mean return 
and power-law tails for large returns.

The virtual return distribution can be established from easily accessible 
price data from purchase events of a stock. The return is evaluated over 
a scaling time Δt that simulates the holding time τ. By disregarding the 
reset of the return at purchase events, an approximate virtual return 
distribution can be established. This distribution comprises a normal 
distribution around mean return, followed by an exponential decline 
and a power-law tail for large returns. The theory suggests that the 
return distribution gradually converges to a Gaussian distribution after 
a sufficiently long scaling time Δt. This result agrees with empirical 
findings of Wu (2006) and Liu and Zheng (2022).

The applicability of the model is demonstrated for the MA 
(MasterCard) stock traded at the NYSE, fulfilling the model 
conditions. In previous research the tails of the distribution were 
found to follow a power-law density P(r)~r-(α+1), with α≅3 (e.g. 
Amaral et al., 2000) and α≅1.6 (Alfonso et al., 2012). The application 
of the model to the tails of the return of the MasterCard stock with 
α≅1.6 exhibits good agreement with the empirical data. Also, a 
Student-t distribution with degree of freedom n=2 fits the data well, 
as proposed e.g. by Mantega and Stanley (1994) and Gu et al. (2008).

In contrast to most contemporary studies, Matia et al. (2004) 
observed an exponential distribution of the form P r e r

( ) ~
/−β σ  

Figure 4: Displayed are the empirical return data for the stock MA for 
Δt=60 days (dots) σ=0.14 and r =6.12×10-2. The solid line represents 
the virtual return distribution (43) with k=6.79×10-2 and α=1.6. Also 
displayed is the corresponding normal distribution (dotted line) and 

Laplace distribution (dashed line). The range of the normal distribution 
is marked between dash-dot lines, while the crossover return is 

indicated by dotted lines with rc=0.14

Figure 3: Displayed are the empirical return data for the stock MA for 
Δt=20 days (dots) with σ=8.04×10-2 and r =2.02×10-2. The solid line 

represents the virtual return distribution (43) with k=3.92×10-2 and 
α=1.6. Also displayed is the corresponding normal distribution (dotted 
line) and Laplace distribution (dashed line). Indicated is the range of 
the normal distribution (│r│=k) (dash-dot-lines) and the crossover 

return (dotted lines) with rc=8.0×10-2

Figure 5: The scaled empirical return data for the stock MA are 
shown for Δt=5 days (circles), Δt=20 days (triangles) and Δt=60 days 
(squares). The solid line depicts the scaled virtual return distribution 
(48) with α=1.6. The dotted line is a Student-t distribution with the 

degree of freedom n=2
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for daily returns of the 49 largest stocks in the Indian stock market. 
They reported values of β = 1.51 for the negative and β = 1.34 for 
the positive tail. The model presented can explain this result for 
the case that the contributions from the normal distribution around 
the center and the Pareto tail are negligible. Then the virtual return 
distribution can be approximated by the Laplace distribution (44) 
with β = 2 , which is close to the quantities found by Matia 
et al. While they attributed the empirical outcome to the maturity 
of the financial market, the model suggests that it may rather stem 
from the selection of stocks analysed by the investigators.

In conclusion, the presented dynamic theory of the return 
distribution of stocks offers valuable insights into the relationship 
between return dynamics and the corresponding return distribution.
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APPENDIX A

Derivation of the Virtual Return Distribution
We start analysing the return dynamics by disregarding the convection term in (42). The corresponding return distribution is denoted 
P0(t,r) and has the form:

∂
∂

≅ − ( ) + ∂
∂

∂ ( )
∂

P t r
t t

P t r D
r

r
P t r
r

0
0 0

01( , )
, ( )

,

∆
γ  (A1)

Introduced is the scaled return:

r r' =
ρ

 (A2)

where the parameter ρ>0 is chosen such that r’ is of the order one for the considered return region. The evolution of (A1) can be 
investigated by the dimensionless number:

K
D t k

= =0

2

∆

ρ ρ
 (A3)

Applying (41). The parameter K quantifies the relation between the time of ownership Δt compared to the diffusive time ρ2/D0. (A1) 
becomes with (A2) and (A3):
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∆ γ  (A4)

For fixed Δt the magnitude of K depends only on ρ. Two cases can be distinguished.

For small returns ρ<<k, i.e. K→∞, the first term on the r.h.s. in (A4) can be neglected compared to the second. Therefore (A4) can be 
approximated in this case by:
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For small returns, the Brownian diffusion process dominates.11 Since (A5) is a standard diffusion equation, it can be solved with the ansatz:

P t r C t e
r
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0 0

1

2 4

2

0( , ) =
− −

 (A6)

With the initial condition (3) at t0=0:

P0 (t0, r) = δ (r) (A7)

We obtain:
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σ0 02= D t  (A9)
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For ρ>k, i.e. K>1, a stationary solution exists, which can be derived from (A4):
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This relation is equivalent to (24). The stationary distribution can therefore be written with (35) as:
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With the free parameters α, A’ and F’. The crossover return rc is determined by (33). From (34) follows:

F A r
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The transition between the solutions (A8) and (A12) occurs at K≅1, that is at:

ρ ≅ k �  (A14)

Thus, the virtual return distribution can be approximated with (A8) and (A12) as:
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While σ0 is with (A9) a function of t and k with (41) a function of Δt.

11 This is the case for k<rc.
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For a continuous distribution (A8) and (A12) are equal at k, which leads for k< rc to:
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From the normalization condition follows:
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The convection term can be incorporated by expressing the virtual return distribution as:12

P (t,r) = P0 (t, r-vt) (A18)

Applying the chain rule leads to:
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Thus (A1) becomes:
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Which is equivalent to (42).13 Hence, (A18) solves the differential equation (42). With (A15) and (A18) the virtual return distribution 
can finally be written as:
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By choosing t0=0, (39) suggests that t=Δt. Therefore (A9) turns with (41) into:

σ0 02 2= =D t k∆  (A22)

Note that the variance of the virtual return distribution (A21) is with (7) determined by:

σ 2 2
( ) ,t P t r r r drv= ( ) −( )

−∞

∞

∫  (A23)

Introducing the apparent diffusion parameter obtained from empirical data:
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The diffusion parameter of the Brownian diffusion regime can be evaluated with (A23) from:
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Applying (49) and (50).

12 Since (A18) is an approximation derived from (A17), the distribution is not strictly normalized to one. The error is of the order k2.
13 The evolution of the mean return can be interpreted as a moving reference frame with velocity v. 


