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ABSTRACT

The planning and operation of smart grid projects is an issue that has increased in complexity and requires further analysis. This is due to the increase 
of distributed generation sources, generation with renewable sources, storage systems, and a disarticulation of information between the different levels 
in the sector and the stakeholders. All these factors lead to the inherent difficulty of defining appropriate models that help decision making. This paper 
proposes a bi-level optimization model to solve the problem of planning and operation of microgrid projects, as these can be considered as an ideal 
small-scale prototype of the so-called smart grids. In this bi-level scheme, the problem of planning or design of the microgrid is formulated at the 
upper level, while the problem of power dispatch or operation of the units is described at the lower level. The proposed multilevel multi-objective 
decision model is inspired by the system of system (SoS) concept in order to integrate qualitative and quantitative decision-making tools. Likewise, 
key performance indicators (KPIs) are used for the detailed and continuous monitoring of any project. The presented model is applied using the 
information of an electrically isolated microgrid on the Colombian Pacific coast.

Keywords: Smart Grids, Bi-level Optimization, Decision Making, Key Performance Indicators, Quality Function Deployment, Energy Planning 
and Management 
JEL Classifications: C61, D70, L94, Q42

1. INTRODUCTION

1.1. Motivation
The traditional power grid is going through one of the biggest 
transitions in its long history: a step towards smart energy networks. 
This new concept is responsible for adding a pillar of information 
and communication technologies - ICT and distributed generation 
sources to the national electricity system in order to provide 
sustainability, accessibility and security of supply. Given this 
context, microgrids appear as an ideal small-scale prototype of Smart 
Grids due to their capacity for expansion, management, flexibility 
of experimentation, acceptance of new technologies, inclusion of 
renewable resources, storage and demand response programs.

The adoption of microgrids has grown rapidly worldwide, 
becoming attractive not only to government entities but also to 
energy companies that implement such projects to large consumers, 
such as factories, supermarkets, universities and hospitals. The 
microgrid market is expected to grow from USD 22,220 million 
in 2019 to USD 39,100 million in 2023, with a compound annual 
growth rate of 11.97% (PRNewswire, 2018). The potential benefits 
and positive market projections of microgrids have mostly been 
obtained through simulations and academic studies, but once the 
project materializes companies have difficulties in perceiving these 
incentives and benefits (Ali et al., 2017; Pacheco and Foreman, 
2017); The main reason is due to its multidimensional nature in 
which multiple actors (direct/indirect), multiple objectives and 
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multiple technical, social, and environmental criteria are involved. 
Thus, making a decision in planning an operation of the microgrid 
is not an easy task (Calvillo and Villar, 2016).

In order to model this type of problem, a multilevel approach 
can improve the decision making in the energy sector. In the last 
decade, the use of these techniques has been established as a useful 
tool for: the conceptualization and abstraction of hierarchical 
organizational models, decentralized management problems 
and Big Data (Lu et al., 2016), Smart Energy Cities (Carli et al., 
2017), Distributed Active Systems (ADS) (Zeng et al., 2016) and 
in general, for any Smart Grid project (Shen et al., 2017).

Specifically, two-level decision techniques (bi-level) are 
commonly used in studies of microgrid projects where it is 
necessary to consider planning and operation in a coordinated 
manner. In these models, decision makers try to optimize their 
respective objective functions independently, but decisions are 
affected in the decision space of the other level. Planning is the 
leader or the upper level problem and Operation is the follower or 
the lower level problem. The execution of decisions is sequential, 
from upper to lower level, which is consistent with the logical 
relationship between planning and operation. Another fundamental 
aspect to consider is the time scales present between long-term 
planning and short-term operation, being these different a bi-level 
decision model is capable of allowing their interaction and optimal 
modeling (Zeng et al., 2016).

1.2. State of Art
Most of the research papers reported in the literature on the 
planning and operation of microgrid projects have been addressed 
separately. On the one hand, in Planning, long-term formulators 
seek to configure and size microgrid assets. Generally, they use 
simple or multi-objective optimization tools. On the operation 
side, the authors assume that they already know a capacity or 
a predetermined design of the microgrid, and propose different 
optimization algorithms to minimize the operating cost of the 
systems, considering the environmental and reliability implications. 
The main reason why they have worked independently and not 
simultaneously is that the problem becomes a multilevel decision-
making model of non-convex nature and NP-Hard type; Even 
the simplest multilevel decision making model with continuous 
and linear functions is a strongly NP-Hard problem and therefore 
difficult to solve (Hansen et al., 1992; Zhao and Gu, 2006). This 
gives us an idea of the complexity involved in the development of 
algorithms to solve multilevel problems with nonlinear, multiple 
objective, non-convex, discontinuous and constrained functions 
(Sinha et al., 2017).

Recent works have been trying to address this challenge and have 
coupled planning and operation in order to obtain better results. In 
(Quashie et al., 2017) they present a methodology for isolated or 
interconnected microgrid using a two-level optimization model. 
In (Quashie et al., 2017) and (Quashie et al., 2018) they develop a 
hierarchical model of two levels, where the upper level determines 
the optimal configuration of the microgrid that minimize the 
investment cost and the annualized cost of the operation; while 
the problem of the lower level optimizes the output of distributed 

energy resources (DER) through the implementation of an energy 
management system (EMS). In (Minciardi and Robba, 2017) 
they propose a two-level solution approach for the design of a 
system control scheme consisting of a series of micro-networks 
(followers): At the upper level, they minimize network losses and 
environmental impact, while the lower level minimizes Microgrid 
costs and technical losses. In (Quashie and Joos, 2016) the author 
proposes a two-level planning strategy that optimally configures 
an urban microgrid to maximize its benefits. This work uses the 
Karush-Kuhn-tucker (KKT) condition to transform the two-level 
formulation into a linear programming of mixed single-level 
integers. In (Poursmaeil et al., 2018; Samadi and Salehi, 2018) 
they formulated a two-level model where the optimal planning 
of the (DER) is carried out at the upper level and the problem of 
optimal assignment of a switch to divide the traditional distribution 
system into a series of microgrids is carried out at the lower level.

Some authors have addressed multi-level optimization in addition 
to multiple objectives considering some factors that add complexity 
to the problem. In (Lv et al., 2016) they present a bi-level muti-
objective model to obtain the operational benefits of both the 
distribution network and microgrids connected to the network. 
In (Li et al., 2018) a multi-objective fuzzy bi-level optimization 
problem is proposed to model the planning of energy storage systems 
(ESS) in distributed generation systems. In (Gao et al., 2017) they 
develop an approach to the planning of distributed generation 
sources in a distribution network based on a multi-stage technique. 
Finally, in (Stojiljković, 2017) the authors present a methodology 
to solve energy supply problems using a multi-objective bi-level 
optimization model, where the upper level defines the design and 
energy policies, while the lower level defines the operation.

1.3. Description of the Issue
According to the literature review (Carli et al., 2017; Duncan et al., 
2011a; Personal et al., 2014) three main challenges were found to 
overcome (Figure 1):
(1) A disarticulation between the different levels that make up 

the energy field. The solutions found in the literature address 
very specific problems and there is no linking between the 
enterprise-level operational and strategic objectives and the 
national-level objectives when designing microgrids.

(2) The need for qualitative and quantitative decision support 
tools. The solutions found in the literature only have 
quantitative decision support tools (mathematical optimization 
models), leaving aside tools that allow considering and 
transforming the judgments of those directly responsible for 
the project into numerical assessments.

(3) The difficulty of developing efficient algorithms. There are two 
main classes of algorithms applied to bi-level problems: the 
classical and the metaheuristic (Sinha et al., 2018). In classical 
algorithms, the problem is supposed to behave mathematically 
well, i.e. contains functions that are linear, quadratic or 
convex. In most of the literature consulted the authors make 
strong assumptions to apply reduction techniques at a single 
level due to the high degree of difficulty of the problem, 
such as the Karush-Kuhn-Tucker (KKT conditions method) 
(Cervilla et al., 2015; Esmaeili et al., 2019; Quashie and Joos, 
2016; Quashie, Bouffard, et al., 2017). Moreover, there are 
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metaheuristic algorithms such as evolutionary algorithms and 
swarm intelligence like differential evolution (DE), genetic 
algorithms (GE), particle swarms (PSO) and the algorithm 
of colony of artificial bees (ABC). When these two kinds 
of algorithms are compared, the classical methods present 
high levels of uncertainty and easily suffer the “curse” of 
dimensionality on a large scale. This involves a large amount 
of computation time to solve problems (Sheikhi et al., 2016). 
Evolutionary algorithms have the advantage of balancing 
computational efficiency and accuracy, and that is why they 
are considered in this study (Jung et al., 2014).

This paper proposes a bi-level planning model that combines problems 
of Planning/Design at the upper level (Leader) and Operation at the 

lower level (Follower) with the development of a multi-objective 
bi-level metaheuristic algorithm by particle swarm (BLMOPSO). 
The model allows planners, managers and/or policy makers to make 
optimal or close to optimal decisions on the use of a microgrid asset, 
ensuring adequate solutions to strategic and operational objectives 
set by the energy company. One of the advantages of this work is the 
use of KPIs (up to twelve for this study), which are closely linked to 
strategic objectives and allow answering critical business questions 
set before the proposed optimization model.

1.4. Contribution
The main contributions of this work are the following:
1) A proposal for a multi-objective optimization strategy in 

organizational hierarchical decision problems, where a central 

Figure 1: Proposed strategy overview
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decision model (Leader) is responsible for making strategic 
decisions and a low-level decision model (Follower) is 
responsible for making tactical or operational decisions.

2) A planning model used in the construction of a microgrid as a 
case study. This model delivers the information for designing 
conventional and unconventional energy sources and the 
operational considerations of project assets.

3) The implementation of a PSO metaheuristic algorithm that 
yields adequate solutions at both levels.

4) The model consists of qualitative and quantitative decision 
support tools, as well as key performance indicators (KPI) 
and a systemic approach (System of Systems).

1.5. Article Organization
The following part of this paper is organized as follows: 
Section 2 presents the proposed general model, the mathematical 
representation of assets and KPIs. Section 3 shows the 
metaheuristic solution algorithm. Section 4 presents the application 
of the model in a case study. Finally, section 5 presents the 
conclusions of the work.

2. PROPOSED GENERAL MODEL

In order to model the bi-level optimization problem a new 
systemic approach (System of Systems) is considered in 
this work. This allows to obtain a conceptual overview and 
to describe the stages and tasks in each development phase 
(Aljohani, 2018; Arasteh et al., 2016; Cavalcante et al., 2016; 
Duncan et al., 2011b; Garvey, 2018; Pacheco and Foreman, 
2017) The model considers three stages of the life cycle of a 
system, these are: Definition of the technical process, planning/
design and operation (Figure 2).

In the technical process definition phase qualitative methods are 
used for decision-making assistance in order to make a coherent 
assignment of the weights that each of the KPIs must have. It is very 
important to determine which of these indicators has the greatest 
impact according to the area and project to be implemented. In 
this work, the decision-making techniques Hierarchical Analytical 
Process (AHP) and the Quality Function Deployment (QFD) both 
of diffuse representation are considered. These techniques allow 
to transform the human judgments of experts to mathematical 
representations; in (Chang, 1996; Osorio-Gómez et al., 2018) the 
theorems, axioms and mathematical foundations that must be taken 
into account for the realization of both techniques are presented 
in greater detail. Also, in this phase are defined the stakeholders, 
interests and objectives, both the Smart Grid and the strategic-
levels objectives of the company.

The Planning/Design and Operation phases are addressed as a 
multi-objective bi-level optimization problem. The Planning/
Design phase represents the leader or the upper level problem 
and the Operation acts as the follower or the lower level problem. 
The Planning/Design problem should be considered on a larger 
time scale (years) compared to the operation problem (days). The 
top level or leader receives input information (from technical 
process definition phase) about the planning time horizon, the 
maximum load, available assets and economic parameters, and 

the valuations or preferences given by the stakeholders. After 
selecting a design option, i.e. the number of power units based on 
the input information and restrictions, the lower level problem is 
addressed. Data obtained on the upper level serve as parameters for 
the lower level problem whose solution determines the set points 
of the assets that minimize all of the considered KPIs (emissions, 
operational cost, SAIDI, SAIFI, etc.). This solution is returned 
to the upper level to assess the total cost along the planning time 
horizon. This process is repeated until a more efficient design and 
operational combination is determined.

2.1. Mathematical Modeling Considered in the 
Development of a Microgrid Project
The first fundamental step is to mathematically represent the 
models that govern the case study. Three models are considered 
to do so: mathematical models of microgrid assets, mathematical 
models of key performance indicators (KPIs) and mathematical 
models of objective functions.

2.1.1. Mathematical models of system assets
An accurate representation of the operating restrictions of the 
formulation is essential, and therefore, the asset outputs of the 
system must be modeled correctly. The assets considered for 
the purposes of this study include diesel power generation units, 
photovoltaic generation systems, wind turbine generation systems 
and battery energy storage systems.
1) Photovoltaic model: The available photovoltaic power PPV is 

estimated as
 P t G t APV PV� � � � �* *�  (1)

Where G (t) is the irradiance (kW/m2), A is the area of the solar 
panel and ηPV is the efficiency of the solar panel and the DC/DC 
converter.

2) Wind turbine model: The power generation of a wind turbine 
PWT is calculated with equation 2 and depends on the speed and 
power of the wind at the installation site.
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Where PR is the rated power output, VC is the wind cut-in speed, 
VR is the rated speed, and VF is the furling speed.

3) Battery model: The power stored and managed by a battery EBat 
is defined by the following equation:
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Where σ is the self-discharge rate per hour, EPV is the power of 
solar panels, EWT is the power of wind turbines, ηInv is the inverter 
efficiency, ELoad is the power demand, and ηBat is the efficiency of 
the battery.
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4) Diesel generator: The following equation calculates the power 
of the diesel generator PG (t):

 P t P tG G Gi� � �� * ( )  (4)

Where ηG is the efficiency of the generator, and PGi is the rated 
power.

2.1.2. KPI mathematical models
The KPIs in this study are constructed based on the following 
sequence: transform the functionality of the assets of the microgrid 
project into benefits, and then transform these into measurement 
parameters (KPIs). This type of procedure guarantees at least one 
decision variable (for example, the power generated by the source) 
to optimize the cost function of the objectives of the project. The 
KPI equations are the following:

1) Increase distributed generation capacity

 KPI
P N P N

P N P N P Nre
wt
M

WT PV
M

PV

wt
M

WT PV
M

PV Gi Diesel
1
� �

�

� �
�

* *

* * *

 (5)

Where γre is the penetration of the renewable sources, Pwt
M  is the 

wind turbine power, NWT is the number of turbines, Npv is the 
number of solar panels, PPV

M  is the power of the solar panels, PGi 
is the rated power of the diesel unit, and NDiesel is the number of 
diesel units.

2) Reduction in hours of power not supplied by renewable sources

 KPI LPSP
LPS t

P t t
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T
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T
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Figure 2: Decision-making process
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Where LPSP is the number of hours of power not supplied by 
renewable sources, and LPS(t) is defined by the following equation:

 
LPS t P t t

P t P t t

C t C
Load

PV wT

Bat Bat
� � � � � �

� � � � �� �
� �� � �
�

�
�*

*

min

�
�

1��

�

�
�
�
 (7)

Where PLoad is the power demanded by the load, Δt is the time 
interval (1 h in this paper), PPV (t) is the power supplied by solar 
panels, PwT (t) is the power supplied by wind turbines, CBat is the 
charge of the battery, and CBat min is represented as

 C DOD SBatmin Bat� �� �1 *  (8)

Where DOD is the maximum depth of discharge, and SBat is the 
rated capacity of the battery.

3) Reduction in hours of power not supplied by renewable 
sources

 KPI H
H
HDG
DG

T
3
= =%  (9)

Where %HDG is the factor of hours in which renewable source 
power is supplied (solar panels, wind turbines and batteries), and 
HT is the total number of analysis hours.

5) System average interruption duration index (SAIDI) reduction

 KPI SAIDI
U N
N

u

uTot
4
= =

*
 (10)

Where U is the offline time, Nu is the number of users affected by 
the outage, and NuTot is the total number of users (Hong et al., 2018).

6) System average interruption frequency index (SAIFI) 
reduction

 KPI SAIFI
N

N
u

uTot
5
� �

� *
 (11)

Where λ is the interruption rate, Nu is the number of users affected 
by the outage, and NuTot is the total number of users (Hong et al., 
2018).

7) Power not supplied reduction
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Where U is the offline time, P is the load of each source within 
the system, CBAT is the battery charge, and the subscripts (PV, WT, 
BAT and Diesel) refer to each source (Ansari et al., 2016).

8) Technical losses reduction
According to (Bhuiyan and Yazdani, 2014), there is a load 
considered as the “dump load” that absorbs surplus energy and 
is used when the produced power cannot be used or stored in the 
system. The formula to calculate it is the following:

 KPI P P PLoss Total Load7 � � �  (13)

Where PLoss is the dump load, and PTotal is the total power.

9) Investment and maintenance costs minimization
Equation 14 defines the total costs:

 KPI C C C C w ET CP mt Diesel E T8
� � � � � *  (14)

Where CCP is the annual investment cost, Cmt is the operation and 
maintenance cost, CDiesel is the cost of power generation using 
diesel, wE is the emissions cost factor, and ET is the total amount 
of emissions. CDiesel is calculated as

 C G t C G C T
TDiesel

t

T

Diesel cd l l
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�
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��
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1
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With GDiesel being the hourly diesel fuel consumption in a year, Ccd 
is fuel cost, Gl is the diesel generator lubricant expenses, Cl is the 
lubricant cost, TC is the calculation scope and T is 8760, which 
is equivalent to the number of hours in a year. Each element in 
equation 15 also has its own calculation as follows:

 G CC PDiesel Diesel Diesel= *  (16)

 G FG Pl l Gi= *  (17)

C CRF N C N C N C C CCP PV PV WT WT BAT UB Tr re� � � � ��� ��* * * *  

 (18)

Where CCDiesel is the fuel consumption rate, PDiesel is the power 
of the diesel generators, FGl is the lubricant expenditure factor, 
PGi is the rated power of the diesel generator, CRF is a capital 
recovery factor, NPV is the number of solar panels, CPV is the solar 
panel cost, NWT is the number of wind turbines, CWT is the cost 
of the wind turbines, NBAT is the number of batteries, CUB is the 
cost of the batteries, CTr is the land cost, and Cre is the equipment 
replacement cost. The recovery factor CRF and the replacement 
cost Cre are obtained with the following equations:

 CRF
i i
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Tc�
�� �
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* 1

1 1

 (19)

 C ips N A N A N ATr PV PV wt wt BAT BAT� � �*( * * * )  (20)

 C N C C N Cre BAT re
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re co
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PV re in
PV� �� � �� �* * (21)

Where Tc is the asset life time in years, i is the interest rate, ips is 
the land price index, APV is the area occupied by solar panels, Awt 
is the area occupied by wind turbines and ABAT is the area occupied 
by batteries (Ruiz, 2016); Cre

BAT  is the replacement cost of each 
battery, Cre co

BAT
− is the replacement cost of battery converters, and 

Cre in
PV
−  is the cost of the inverter of each solar panel. In addition, 

taking depreciation into account,

 C C
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Where CUB is the battery cost, with replacement every 5 year.
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CCO
BAT is the price of the converter of each battery, with replacement 

every 10 years.

 C C
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* 1
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10

 (24)

Cin
PV  is the price of the inverter of each solar panel, with 

replacement every 10 years.

Additionally, using equation 25 again, the operation and 
maintenance cost Cmt is

 
C

N C N C N C

N C
mt

PV mt
pv

wt mt
wt

BAT mt
BAT

Diesel mt
Diesel

�
� �

�

�

�
�
�

�* * *

* ��
�
�
*Tc  (25)

Where Cmt
pv  is the annual maintenance cost of the panel, Cmt

wt is 
the annual wind turbine maintenance cost, Cmt

BAT  is the annual 
cost of batteries, NDiesel is the number of diesel units, Cmt

Diesel  is the 
maintenance cost of each diesel unit, and TC is the calculation 
scope of the optimization.

10) Levelized cost of electricity (LCOE) minimization
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Where Io is the initial investment, Mel is the power generated in 
year t, At is the total annual cost in year t, and i is the interest rate.

11) CO2 emissions minimization
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Where GDiesel (t) is defined by equation 16, PPV
M  is the peak power 

of each solar panel, EC
PV  is the emissions produced in the 

construction phase of each panel, Pwt
M  is the maximum power of 

each wind turbine, EC
wt  is the emissions produced in the 

construction phase of the wind turbines, SBAT is the maximum power 
of each battery, EC

BAT  is the emissions produced in the construction 
phase of the batteries, and Eop

Diesel  is the emissions from diesel 

generators.

12) SOx emissions minimization

KPI E F P F P F PSOx PV
SOx

PV WT
SOx

WT Diesel
SOx

t

T

Diesel11

1

� � � �
�
�* * *  (28)

Where FPV
SOx  is the SOx emissions factor of the solar panels, PPV 

is the power of the solar panels, FWT
SOx  is the SOx emissions factor 

of each wind turbine, PWT is the power of the wind turbines, FDiesel
SOx

is the SOx emissions factor of the diesel generator, and PDiesel is the 
power of the diesel generators (Benitez-Leyva, 2015).

13) NOx emissions minimization

KPI E F P F P F PNOx PV
NOx

PV WT
NOx

WT Diesel
NOx

t

T

Diesel12

1

� � � �
�
�* * *  (29)

Where FPV
NOx is the NOx emissions factor of the solar panels, PPV 

is the power of the solar panels, FWT
NOx is the NOx emissions factor 

of each wind turbine, PWT is the power of the wind turbines, �FDiesel
NOx  

is the NOx emissions factor of the diesel generator, and PDiesel is 
the power of the diesel generators.

2.1.3. Mathematical model of the objective functions
To optimize the leader (planning/design) and follower (operation) 
problems in a coordinated manner, equation 30 shows the 
formulation of the bi-level problem. Figure 3 shows this process 
graphically.
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From the equation, PDiesel and CBAT are obtained from the 
optimization process in the follower. In addition, x=[PDiesel, CBAT, 
NPV, NWT, NDiesel, NBAT] is the decision vector at the upper level, 
[FAU, FComp] are the objective functions of the optimization problem 
called Universal Access to Power and Competitiveness, and H(.) 
and G(.) are the restrictions of the planning problem located at 
the upper level. In the lower level, y=[PPV, PWT, PDiesel, CBAT, NPV, 
NWT, NDiesel, NBAT, t] is the decision vector at an operation time t, 
[fsc, fs] are the objective functions called Security-Quality and 
Sustainability to be optimized, and h(.) and g(.) are the problem 
constraints. Therefore, [FAU, FComp, fsc, fs] are the four smart grid 
strategic objectives established under the Colombian National 
Energy Plan for 2030 (PEN-2030). The equations for the four 
objective functions are below.

Universal access to power objective function

 F Q
KPIn KPIn
KPInAU

n
n

BS

BS
�

�� �
�
�
1

12

1
2 *  (31)

Competitiveness objective function

 F Q
KPIn KPIn
KPInCOMP

n
n
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BS
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�� �
�
�
1
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2
2 *  (32)

Supply security and quality objective function

 F Q
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n
n
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3
2 *  (33)
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Sustainability objective function

 f Q
KPIn KPIn
KPInS

n
n

BS

BS
�

�� �
�
�
1

12

4
2 *  (34)

Where KPIn is the n-th KPI and KPInBS is its value. This step is critical 
in the evaluation of smart grid projects (Giordano et al., 2012). The 
main reason is the possibility of comparing new scenarios with the 
current scenario and finding the difference between the costs and 
benefits generated. The importance weights, Q2nm, were obtained using 
the fuzzy quality function deployment (QFD) technique. The results in 
Tables 1 and 2 were obtained considering the work of (Osorio-Gómez, 
2011; Osorio-Gómez et al., 2018) with the modification and addition 
of fuzzy logic, which easily helps to determine the ranking in linguistic 
terms and prioritize smart grid goals. It is necessary to preliminarily 
find stakeholders with expertise in this field and energy companies 
that are willing to implement the project.

2.2. Solution Algorithm
This study implements a particle swarm optimization (PSO) 
algorithm that refers to a metaheuristic that evokes the behavior of 
birds flocking and fish schooling in nature (Kennedy and Eberhart, 
n.d.). This algorithm has been used to solve complex problems 
with multiple objectives in different scientific areas, including the 

energy sector (Kheshti and Ding, 2018). The proposed algorithm 
uses a scheme similar to that used in (Sinha et al., 2017) to solve 
bi-level multi-objective optimization problems (BLMOPSO).

1) Initial and adjustment parameters: The first elements to 
establish are the number of particles and the n dimensions of 
the problem. Subsequently, each particle i ∈ s is assigned a 
velocity vector vi ∈ Rn that indicates the direction of the 
movement of the particle caused by the combination of the 
inertial velocity, the best position reached by the particle pi

best  
and the best position reached by the entire population gbest. 
Each particle i moves to a new position p Ri

k+1 n∈  in each 
iteration k according to the following equation:

 v wv c R p p c R g pi
k

i
k

i
best

i
k best

i
k� � � �� � � �� �1

1 1 2 2
 (35)

 p p v i si
k

i
k

i
k� �� � � �1 1

1 2, , , ,  (36)

 Where w is the inertial weight, c1 and c2 are the cognitive and 
social parameters, and Rz ∈ U[0,1]: z ={1,2} are uniformly 
distributed random values in the range of [0,1]. Each of these 
parameters are configured at both the upper and lower levels.

2) Evaluation: The BLMOPSO algorithm starts with an initial 
population located randomly in the search space Rn; namely, 

Figure 3: General power planning structure based on a bi-level optimization model
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the control parameters are initialized at both levels for each 
particle I ∈ s, including positions pxi and pyi, with particle 
velocities vxi and vyi at both levels. Population size s assumes 
that the current positions of the particles at the upper and 
lower levels are the best positions locally pxi

best and pyi
best. 

Similarly, the best global positions of the upper and lower 
levels are estimated for the entire population. The algorithm 
performs the iterations of the upper level problem, in each 
iteration, searches for optimal solutions and removes the 
nondominated solutions. The above procedure updates the 
repository and checks the maximum limit that transfers as 
input parameters to the lower level problem. The lower level 
routine performs iterations, and the algorithm searches for 
solutions to determine a leader and extract the nondominated 
particles. Finally, the repository is updated, and the limits are 
checked; the solutions from this level return to the upper level 
to evaluate the cost functions again and adjust the parameters 
with the new conditions. This process is repeated until the 
maximum number of iterations has been completed. Figure 4 
shows the steps of the BLMOPSO algorithm.

3. CASE STUDY

To verify the effectiveness of the proposed optimization model, a 
microgrid was simulated assuming a non-interconnected zone of 
the National Electricity System. The goal is to illustrate how the 
proposed model can be used to support planners, managers and/or 
energy policy makers to make optimal decisions in an uncertain 
environment. An islanded microgrid is modeled with four main 
assets: a diesel generator, a photovoltaic system, a wind generator 
and batteries (Figure 5).

3.1. Area Studied
The Colombian government aims to install sustainable energy 
projects in areas that are not connected to the National Electricity 
System. To do so, the Miramar Communitarian Counsel, located 
in Bahía Málaga in the Colombian Pacific region, was studied. 
This area has an NUTot of 34 houses and 165 inhabitants, and fishing 
is the main economic activity. The construction of an islanded 

microgrid to provide electricity service to meet the basic needs of 
the population and a cooling system for the conservation of fish 
are being considered.

3.2. Data Acquisition and Processing
Numerical data on the population and electricity demand and 
meteorological, technical and economic data are obtained 
from two sources: Colombian governmental energy agencies, 
such as the “Institute of Planning and Promotion of Energy 
Solutions” (Instituto de Planificación y Promoción de Soluciones 
Energéticas - IPSE), and various technical references found in 
the literature. Figures 6-8 show the load profile, solar radiation 
per hour and daily wind speed, respectively. The average daily 
energy demand considered in the study is 78.77 kWh/day, of which 
48.0 kWh/day corresponds to the fishing activity and the remaining 
30.77 kWh/day is the consumption of the community in other 
activities. The projected maximum load is 7.46 kW at 19:00 h. The 
average daily solar radiation is 3.5 kWh/day, and the maximum 
daily solar radiation is 4.0 kWh/m2 in the summer season. The 
NREL-NASA database was used to calculate the peak number of 
sun hours, considering the chosen inclination and orientation and 
the location data of the site. The peak number of sun hours in the 
worst months is 3.67 h. The average wind velocity ranges from 
7.8 km/h to 10.8 km/h.

The tables below show some technical factors. Table 3 shows the 
surface area of the assets, Table 4 shows the costs, and Table 5 
shows the emissions and environmental factors.

Table 6 shows the power, failure rates and other technical data 
of the microgrid.

The fuzzy QFD method was used to obtain the KPIs weights with 
respect to the smart grid tactical objectives. To do so, a survey 
was conducted with five experts from a major company in the 
energy sector interested in building the microgrid. They gave their 
evaluation, which is shown in Table 7 with its respective triangular 
fuzzy number (TFN). The linguistic labels indicate the following: 
VL = a very low relationship; L = a low relationship; M = a 
medium relationship; H = a high relationship; and VH = a very 

Table 1: QFD matrix for determining the relative weights of enterprise-level strategic objectives
QFD matrix smart grid tactical objectives (What) Enterprise-level strategic objectives (How)

ObjE1 ObjE2 ObjE3 ObjE4 ObjEm
OTSG 1 Q111 Q112 Q113 Q114 Q11m
OTSG 2 Q121 Q122 Q123 Q124 Q21m
. . . . . .
. . . . . .
. . . . . .
OTSG n Q1n1 Q1n2 Q1n3 Q1n4 Q2nm
Relative weights of enterprise-level strategic objectives Weight 1 Weight 2 Weight 3 Weight 4 Weight m

Table 2: QFD matrix for ranking the KPIs of the project 
QFD matrix Enterprise-level strategic objectives (How) Ranking KPIs

ObjE1 ObjE2 ObjE3 ObjE4 ObjM
KPI1 Q211 Q212 Q213 Q214 Q21m KPI1
KPI2 Q221 Q222 Q223 Q224 Q21m KPI2
KPI n Q2n1 Q2n2 Q2n3 Q2n4 Q2nm Ranking KPI n
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high relationship. Finally, Table 8 shows the obtained evaluations. 
Two evaluation scenarios were established; in the first scenario, 
the environmental factor (KPI1, KPI2, KPI3 and KPI10) is given 
greater importance; in the second scenario, the security of the 
supply with a minimum cost(KPI3, KPI5, KPI6, KPI7 and KPI8) 
is given greater importance.

Figure 4: Flow diagram of the bi-level multi-objective particle swarm optimization algorithm (BLMOPSO)

Table 3: Technical considerations for the case study
Name Value Unit Description
ABat 0.14 m2 Area occupied by each battery
APV 1.68 m2 Area occupied by each solar panel
AWT 14.5 m2 Area occupied by each wind 

turbine



Martínez, et al.: A Bi-level Multi-objective Optimization Model for the Planning, Design and Operation of Smart Grid Projects. Case Study: An Islanded Microgrid
Microgrid

International Journal of Energy Economics and Policy | Vol 10 • Issue 4 • 2020 335

3.3. Solution of the Planning and Operation Problem
The BLMOPSO algorithm was run on a PC with the Windows 
10 operating system, with 8 GB RAM and an Intel Core i3 2.3 
GH processor. MATLAB R2018 software was used to perform 
the simulation. The control parameters in each level were set as 
follows: upper level iterations iterx = 50; lower level iterations 
itery = 90; number of swarms s = 40; number of particles I = 150; 
inertia weight w = 0.7; and cognitive coefficients c1=1.2 and 
c2=1.3.

Table 9 and Figure 9 show the 15 solutions from the optimization 
algorithm, where the level of planning delivers the optimal design 
(number of assets of the microgrid) according to the smart grid 
tactical objectives and KPIs established for case study 1. In the 
Operations level the smart grid tactical objectives from this level 

Figure 5: Proposed microgrid scheme

Figure 6: Daily power demand of the Miramar population

Figure 7: Solar panel power per hour per PV considered in the study area

Table 4: Costs considered for the case study
Name Value Units Description
CCO
BAT 731.18 USD Cost of the converter of each 

battery
CEnergy 0.24 USD/kWh Energy price
CPV 158.01 USD Cost of each solar panel
CUB 436.57 USD Cost of each battery
CWT 1,261.68 USD Cost of each wind turbine
Ccd 2.67 USD/gal Fuel cost

Cin
PV 121.88 USD Cost of the inverter of each solar 

panel
Cl 3.96 USD/gal Lubricant cost
Cmt
BAT 54.17 USD/Year Maintenance cost of each battery

Cmt
Diesel 151.36 USD/Year Maintenance cost of each diesel 

unit

Cmt
PV 8.13 USD/Year Maintenance cost of each solar 

panel

Cmt
WT 45.70 USD/Year Maintenance cost of each wind 

turbine

Table 5: Emissions and environmental factors considered 
for the case study
Name Value Units Description 

EC
BAT 0.059 tCO2/kWh Emissions due to the construction 

of each battery 

EC
PV 1.392 tCO2/kW Emissions due to the construction 

of each solar panel

FDiesel
SOx 0.675 tCO2/kW Emissions due to the construction 

of each wind turbine 

Eop
Diesel 0.012 tCO2/gal Emissions due to the operation of 

each diesel unit

FDiesel
NOx 21.8 gNOx/kWh NOx emissions factor of the diesel 

generator

FDiesel
SOx 0.45 gSOx/kWh SOx emissions factor of the diesel 

generator

FPV
NOx 0.1462 gNOx/kWh NOx emissions factor of the solar 

panels 

FPV
SOx 0.2580 gSOx/kWh SOx emissions factor of the solar 

panels

FWT
NOx 0.0343 gNOx/kWh NOx emissions factor of the wind 

turbines

FWT
SOx 0.0430 gSOx/kWh SOx emissions factor of the wind 

turbines

Figure 8: Annual wind speed average in the study area
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are optimized and an optimal management of the proposed design 
at the planning level is suggested.

The algorithm focused its solutions on the sustainability 
objective due to the fuzzy QFD weightings given by the 
stakeholders. Only in the first six solutions is diesel used 
moderately for the power supply, which represented the load of 
refrigerators from 7:00 pm until 7:00 am in most cases. The other 
solutions are strictly the use of nonrenewable energy sources and 
batteries for power generation. Table 10 shows the KPI values 
optimized in the model and the baseline KPIs. Figure 10 shows 
the percentage difference of the two KPIs, which reveals that, 
for example, KPI9 (reduction in CO2 emissions) increases in 
the first six solutions compared to the baseline, and in the next 
nine solutions, there are solutions with up to a 50% reduction 
in emissions.

Table 11 shows the upper level solutions for case study 2. Unlike 
case 1, each of these solutions consider at least one diesel generator 
based on the weightings given by the stakeholders of the project, 
who in the fuzzy QFD matrix gave greater importance to the 
security of the supply with a minimum cost. Figure 11 shows 
that diesel generation is always active during operations and 
combines with nonrenewable generation sources and batteries. 
Table 12 shows the optimized KPI values and baseline KPIs for 
case 2. Likewise, the percentage difference of the two KPIs is 
taken as an example, and in the nine solutions, KPI9 (reduction in 
CO2 emissions) increases from 6.09% to 60.97% compared to the 
baseline, and the operations and investment cost KPIs increase up 
to 85% due to the low investment and maintenance costs of diesel 
generation. This difference is shown in Figure 12.

Table 6: Power values and other factors
Name Value Units Description
PGi 10 kW Rated power of the diesel units

PPV
M 0.295

kW Peak power of each solar panel

PTotal 10.07 kW Power required by the load
PWT
M 1 kW Peak power of each wind turbine

SBAT 2.49 kWh Rated capacity of the battery
UBAT 1 h/Year Time offline of the batteries
UDiesel 12 h/Year Time offline of the diesel 

generators
UPV 72 h/Year Time offline of the solar panels
UWT 60 h/Year Time offline of the wind turbines
WE 8.34 USD/tCO2 Cost factor of the emissions
λBAT 0.12 Event/Year Failure rate of the batteries
λDiesel 0.18 Event/Year Failure rate of the diesel 

generators
λPV 0.12 Event /Year Failure rate of the solar panels
λV 0.22 Event/Year Failure rate of the wind turbines
CCV 0.14 gal/kWh Rate of fuel consumption
DOD 0.8 - Depth of discharge
FGl 0.001226 gal/kW Lubricant expense factor
ips 11.80 USD/m2 Land price index

For the upper capacity limits,  NPV
Max = 100, NWT

Max = 50, NDiesel
Max = 5, and NBAT

Max = 100. 
The service life of the project is 30 years, and the interest rate is 13%

Table 7: Linguistic rating and its triangular fuzzy number
Rating Triangular fuzzy number (TFN)
Very low (VL) 1 1 1
Low (L) 2 3 4
Medium (M) 4 5 6
High (H) 6 7 8
Very high (VH) 8 9 10

Table 9: Optimum solutions from the planning /design phase for case 1
# of smart grid assets Solutions Baseline

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4 8 10 14 19 26 29 30 30 34 35 37 39 40 41 84

2 30 47 45 30 2 50 41 43 26 22 15 12 9 5 0

1 2 1 1 1 1 0 0 0 0 0 0 0 0 0 3

37 35 21 33 49 50 25 41 17 33 26 34 34 32 34 72

Table 8: Evaluation of the existing relationship between KPIs and smart grid objectives
KPI1 KPI2 KPI3 KPI4 KPI5 KPI6 KPI7 KPI8 KPI9 KPI10 KPI11 KPI12

Universal Access Q211 Q212 Q213 Q214 Q215 Q216 Q217 Q218 Q219 Q2110 Q2111 Q2112
Case 1 H H VH VL VL VL VL VL VL H L M
Case 2 H H H H H H M M M M M M
Competitiveness Q221 Q222 Q223 Q224 Q225 Q226 Q227 Q228 Q229 Q2210 Q2211 Q2212
Case 1 M H VH VL VL VL VL VL VL H L VL
Case 2 H H H VH VH VH H H M M M M
Security and Quality Q231 Q232 Q233 Q234 Q235 Q236 Q237 Q238 Q239 Q2310 Q2311 Q2312
Case 1 VH L H VL VL VL VL L L M M M
Case 2 L L L H H H VH VH VH VL VL VL
Sustainability Q241 Q242 Q243 Q244 Q245 Q246 Q247 Q248 Q249 Q2410 Q2411 Q2412
Case 1 VL VH H VL VL VL VL VL VL VH VH VH
Case 2 VL VL H M L L M M M VH VH VH
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Finally, to obtain the solution of each case study, the fuzzy 
analytical hierarchy process (AHP) method was used to aid 
in strategic decision making. With this tool, decision makers 

(the panel of experts) methodically evaluate all the elements to 
compare them with each other; these comparisons are carried 
out to determine the importance of each solution attained (Heo 

Figure 9: Case 1. Microgrid operation solutions: Power generated by each source

Figure 10: Percentage difference between the KPIs of the model and the baseline case 1
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Figure 11: Case 2. Microgrid operation solutions: Power generated by each source

Figure 12: Percentage difference between the KPIs of the model and the baseline case 2

Figure 13: Priority of smart grid objectives using fuzzy AHPet al., 2010). The comparisons made in pairs are evaluated by 
preference indices if alternatives are compared or by indices of 
importance if criteria or objectives are compared; subsequently, 
the comparisons are then evaluated using the numerical scale 
proposed by Saaty, as shown in Table 13.

Figure 13 shows the priority of the Smart Grid objectives of 
Colombia obtained using the fuzzy AHP tool to evaluate 67 
stakeholders from the energy sector and experts on the topic.

It is observed that the FAU (Universal Access to Power) objective 
was the most important with 50%, followed by fsc (Security and 
Quality of Power Supply) with 30% and finally FComp (enterprise 
competitiveness) and fs (environmental sustainability) with 
10% each. After the KPIs and smart grid tactical objectives are 
weighted, a possible solution can be determined. Using case  1 
(environmental factor) as an example, solution 15 produces 

the lowest carbon dioxide CO2 emissions, which means that it 
is a potential candidate for selection. However, the importance 
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weight given by the experts with the AHP to the environmental 
sustainability objective was relatively low at 10%; therefore, if 
these importance weights are introduced into the algorithm, then 
solution 12 is the best for case 1. In case 2 (minimum cost), solution 
1 was the most economical, which, for purposes of the case, 
would be the best solution. As with case 1, the relative importance 
weights obtained with the AHP method cause the solution to tend 
to associate more with the Universal Access objective, which 
was the most important objective with an importance weight of 

Table 10: Optimized KPIs in the model of case 1
KIPs KPI1 KPI2 KPI3 KPI4 KPI5 KPI6 KPI7 KPI8 KPI9 KPI10 KPI11 KPI12
Units (%) (%) (%]) Hours/

Year
Events/

Year
kWh/
Year

kWh/
Year

$ in 30 
years

$/
kWh

tCO2/30 
years

gSOx/30 
years

gNOx/30 
years

Optimized 
KPIs

100 1.11 100 2.10 0.0001 0.10 10.0 97,100 $ 0.45 75.58 18,922.6 871,946.3
16 0.65 73 1.10 1.16 146,533 $ 0.68 67.62 12,569.9 506,618.9
23 0.64 79 4.10 1.26 143,333 $ 0.67 76.95 12,958.4 495,174.4
23 0.64 75 1.10 1.16 169,865 $ 0.79 79.26 13,921.2 499,036.6
100 1.15 100 1.10 0.10 179,719 $ 0.83 104.51 23,204.6 901,459.6
100 1.03 100 4.10 1.47 136,135 $ 0.64 81.03 22,476.6 803,413.8
100 0.10 100 8.10 15.53 157,216 $ 0.81 49.33 7,144.6 4,168.2
100 0.10 100 8.10 15.50 179,991 $ 0.93 46.02 7,280.0 4,223.3
100 0.10 100 8.10 15.15 126,582 $ 0.65 43.84 7300.0 4,239.86
100 0.10 100 8.10 15.38 136,747 $ 0.70 36.36 8,038.8 4,617.5
100 0.10 100 8.10 15.35 113,681 $ 0.58 33.04 8,225.9 4,713.9
100 0.10 100 8.10 15.29 121,381 $ 0.62 30.31 8,610.5 4,915.1
100 0.10 100 8.10 15.23 116,945 $ 0.60 29.11 9,036.4 5,149.3
100 0.10 100 8.10 15.20 107,482 $ 0.55 27.20 9,233.9 5,254.1
100 0.10 100 8.10 15.17 105,717 $ 0.54 25.21 9,421.0 5,350.5

Baseline 
KPIs

11 0.09 100 0.1 0.2 0.1 20,405 211,496 0.98 50.56 20664,6 82,045.7

Table 11: Optimum solutions for the planning/design phase of case 2
# of smart grid assets Solutions Baseline

1 2 3 4 5 6 7 8 9

3 4 7 7 8 9 15 16 21 84

4 4 0 8 19 7 39 49 7 0

2 1 3 3 1 1 1 1 1 3

7 8 6 7 19 7 25 28 27 72

Table 12: Optimized KPIs in the model of case 2
KIPs KPI1 KPI2 KPI3 KPI4 KPI5 KPI6 KPI7 KPI8 KPI9 KPI10 KPI11 KPI12
Units (%) (%) (%) Hours/

Year
Events/

Year
kWh/Year kWh/30 

years
$ in 30 
Years

$/kWh tCO2/30 
years

gSOx/30 
years

gNOx/30 
years

Optimized 
KPIs

7 0.93 100 1.10 0.0001 0.40 10.00 30,341 0.14 61.09 15,763.73 728,869.24
14 0.92 100 1.10 0.32 31,853 0.15 60.99 15,813.14 720,322.28
9 0.80 100 1.10 0.74 39,400 0.19 57.45 14,578.61 625,720.52
2 0.84 71 1.10 1.16 23,589 0.11 53.99 15,057.60 652,870.09
39 0.71 77 1.10 1.16 83,793 0.40 61.20 13,354.73 550,063.80
23 0.75 75 1.10 1.16 83,796 0.17 54.09 14,087.83 580,555.79
57 0.66 79 1.10 1.16 134,322 0.64 75.79 14,448.62 516,606.04
62 0.63 81 1.10 1.16 134,330 0.75 81.38 14,240.51 490,651.65
29 0.61 77 1.10 1.16 86,787 0.41 53.93 14,678.71 477,889.24

Baseline 
KPIs

11 0.09 100 0.1 0.2 0.1 20,405 211,496 0.98 50.56 20,664.6 82,045.7

Table 13: Saaty scale and its fuzzy representation
Linguistic proposal and its corresponding triangular fuzzy number
Saaty scale Linguistic variable Fuzzy number
1 Equally important (1,1,1)
3 Somewhat important (2,3,4)
5 Moderately important (4,5,6)
7 Very important (6,7,8)
9 Absolutely important (8,9,10)
2,4,6,8 Intermediate opinions (1,2,3); (3,4,5); 

(5,6,7); (7,8,9)
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50%. Therefore, by introducing these importance weights into the 
algorithm, solution 4 is the best for case 2.

4. CONCLUSIONS

This article proposes a bi-level multi-objective optimization 
model for planning and operating smart grid projects, using the 
construction of a microgrid in an area that is not electrically 
interconnected as a case study.

The model considers the development of a metaheuristic PSO 
algorithm. The model also demonstrates the importance of using 
qualitative decision-making tools such as fuzzy QFD and AHP, 
which can transform the judgments of experts into mathematical 
representations to introduce relative importance weights into the 
optimization algorithm. Solutions for two scenarios were identified 
in the context of the smart grid tactical objectives in accordance 
with the Colombian National Energy Plan 2030.

At the upper level, the algorithm aims to find the optimal 
dimensions of the assets of the project in the planning horizon and 
maximize the Universal Access and Competitiveness objectives 
of the energy company. At the lower level, the operating points 
are determined at an interval of 48 h given the maximization of 
the Environmental Sustainability and Security and Quality of 
Power Supply objectives. Compared to other similar methods, the 
proposed method is innovative because it uses KPIs, which are 
widely used in industry and business environments, to quantify 
and evaluate the progress and performance related to the goals 
and objectives of the organization.

The results show that the focus of the solutions depends on the 
QFD weights given by the decision makers. For case 1, the model 
provided 15 solutions and gave priority to power generation using 
nonrenewable energy sources and batteries. The reason is mainly 
that the experts gave greater relative importance weight to KPIs 1, 
2, 3 and 10. For case 2, the decision makers gave more importance 
to the security of the supply with a minimum cost (KPIs 3, 5, 6, 7 
and 8), which caused the algorithm to consider at least one diesel 
generator in all the solutions and use nonrenewable generation 
sources and batteries to a lesser extent. Finally, using the AHP 
tool, the proposed model selected the best solution for both case 
studies. The most convenient scenario for case study 1 was solution 
15, and for case study 2, it was solution 4, in conformity with the 
smart grid tactical objectives using fuzzy AHP.
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