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ABSTRACT

This paper examines price and volatility spillovers in the day-ahead electricity market among the four Hubs in the electricity reliability council of texas 
(ERCOT) and the Southwest Power Pool (SPP). Tests of causality and impulse response functions based on a vector autoregressive model suggest cross-
market spillovers from SPP to ERCOT hubs, and from North to other hubs. Examination of volatility dynamics using multivariate GARCH-BEKK 
suggests positively significant own ARCH and GARCH effects in North and South hubs. Examination of conditional correlations using constant conditional 
correlation and dynamic conditional correlation models suggest high conditional correlations between Houston and South, Houston and North, and South 
and North; Mid-range correlations between West and other ERCOT hubs; and low correlations between ERCOT hubs and SPP. The findings suggest that 
the ERCOT ISO will potentially benefit from integration with the SPP as well as improvements in transmission systems from the West to other hubs.
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1. INTRODUCTION

Electric reliability council of texas (ERCOT) was formed 
in 1970 by Texas Interconnected System (TIS) to comply 
with requirements of the North American Reliability Council 
(NERC). Currently, NERC is organized into five interconnections 
including the Eastern, Western, Texas, Québec and Alaska 
Interconnections. The Texas interconnection operated by the 
ERCOT is the Independent System Operator (ISO) which 
covers most of Texas. Within the United States, ERCOT ISO 
and its participating utilities do not fall under the Federal 
Energy Regulatory Commission (FERC) authority since 
portion of the electric grid in the State of Texas that is under 
the administration of ERCOT is unconnected to electric grids in 
other states. ERCOT is one of eight ISO in North America, and 
one of nine regional electric reliability councils under NERC. 
ERCOT manages the flow of electric power to 23 million Texas 
customers, representing 85% of the state’s electric load and 75% 
of the Texas land area and schedules power on an electric grid 

that connects 40,500 miles of transmission lines and more than 
550 generation units.1

Although ERCOT has its own interconnections, it may not be 
isolated from other ISO’s and Regional Transmission Organizations 
(RTO’s) due to a number of factors: (1) it has the capacity to 
exchange about 860 MW with Southwest Power Pool (SPP) and 
Mexico through the direct current links, (2) the transcontinental 
natural gas pipelines have served as a reliable natural gas supply 
to electricity generating plants across North America. Texas is 
the number one producer of natural gas in the United States by 
producing 7,240,315 million cubic feet and consuming about 
3,458,000 million Btu yearly, the remainder which it presumably 
exports to other States (Energy Information Administration).

ERCOT’s transition from the Zonal market to the Nodal market 
design in December 2010 has brought about fundamental 

1  See ERCOT website at http://www.ercot.com/about/profile/
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improvements due to the establishment of a centralized day-ahead 
market, which allows participants to make financially binding 
forward purchases and sales of power for delivery in real-time. 
While the existence of day-ahead market helps in the creation of an 
efficient market, limitations of the interconnectors and congestions 
between zones raises the possibility that the day-ahead prices are 
relatively segmented. The ERCOT market has four Trading hubs: 
Houston, North, South and West.2 We examine the dynamics of 
price movements and their volatility across the four markets as 
well as with the SPP market.

There are at least four motivations for undertaking this study. 
First, the ERCOT market is fairly unknown. Thus our study 
sheds some light on the performance of this market. Second, as 
Higgs (2009) points out, modeling the dynamics of electricity 
prices and their conditional variance will provide a framework 
to investigate the efficiency of pricing in the day-ahead market 
and the potential impact of interconnections across hubs. Third, 
a good understanding of the pricing and volatility relationships 
across ERCOT hubs as well as with markets outside of ERCOT 
will enable us to better assess the role of interconnections. Finally, 
the findings also provide good policy inputs for the construction 
of new interconnectors as well as for preparation of guidelines for 
the reform of existing market mechanisms.

There is a large body of literature on modeling electricity 
prices and their dynamics. Based on the methodology used, the 
literature on price and volatility spillovers can be divided into 
four categories. The first three categories use univariate models. 
The first group of studies is based on ARIMA models, which are 
concerned about modeling mean prices. They do not address price 
and/or volatility spillover across markets. Examples of this line of 
research include Contreras et al. (2003) and Conejo et al. (2005). 
The second group uses ARIMA-GARCH models to capture 
spillover in prices and volatility over time within each market. 
Examples of research which use this model include Solibakke 
(2002), Bowden and Payne (2007) and Hickey et al. (2012). The 
third category models spillovers in prices across markets using 
vector autoregressive models (VAR), Cointegration and vector 
error correction models but does not address spillovers in volatility. 
De Vany and Walls (1999), Wolak (1997) and Longstaff and 
Wang (2004) are some examples of this line of research. The final 
group uses VAR-MGARCH models to investigate cross market 
spillovers in both price and volatility. Bystrom (2003) applies 
the constant correlation bivariate GARCH model to the short-
term hedging of the Nordic spot electricity prices with electricity 
futures; Worthington et al. (2005) and Higgs (2009) investigate 
the transmission of spot price and its volatility among the regional 
Australian electricity markets; Mohammadi and Loomis (2012) 
examine the dynamics of wholesale electricity price changes, their 
volatility, and their correlations across seven regional electricity 
markets in the United States; Le Pen and Sevi (2010) examine 
the possibility of spillovers in return and in volatility across the 
German, the Dutch and the British forward electricity markets.

2 A hub is an aggregation of representative buses grouped by regions and 
creates a common point for commercial energy trading. I use zones and 
hubs interchangeably when referring to physical locations. However, I will 
use hub prices since their determinants may differ across hubs.

The ERCOT market is fairly unknown, and only a limited number 
of studies have investigated the behavior of day-ahead prices in 
this market. Chen and Jiang (2006) discuss how system-wide load-
capacity ratio and generation-forced outages impact day-ahead 
electricity spot prices. They incorporate these two key factors 
in the price modeling and forecasting the ERCOT market. Kim 
and Warren (2011) propose an hour-ahead prediction model for 
electricity prices that capture the heavy tailed behavior frequently 
observed in the hourly spot market in the ERCOT and PJM West 
hub grids. However, to our knowledge, no study has addressed 
mean and volatility spillovers in the four ERCOT Hubs, as well 
as their relations to neighboring ISOs, such as the SPP.

The purpose of this paper is to investigate the price spillovers as 
well as volatility inter-relationships across the four ERCOT Hubs. 
We examine spillovers in price using a vector autoregressive model 
along with multivariate tests of causality and impulse response 
functions. For spillovers in volatility, we employ three MGARCH 
models namely: The Engle and Kroner (1995) multivariate BEKK-
GARCH model, the Bollerslev’s (1990) constant conditional 
correlation (CCC) and Engle’s (2002) dynamic conditional 
correlation (DCC) models. These models have a number of 
advantages over the alternatives. For example, they are flexible 
enough to represent the dynamics of the conditional variances 
and covariances, and are parsimonious enough to allow for 
relatively easy estimation and interpretation of their parameters 
(Mohammadi and Loomis, 2012). We will also investigate price 
and volatility spillovers between ERCOT hubs and an aggregate 
of prices from the Southwest Public Company nodes in the SPP 
market. In the absence of a significant inter-relationship among 
the hubs, the ability of ERCOT to foster an integrated and 
efficient electricity market is in doubt. Also, lack of significant 
inter-relationships between the ERCOT hubs and SPP, suggest the 
absence of interaction between the two markets.

The remainder of the paper is organized as follows: Section 2 looks 
at the trading of electricity among the hubs. Section 3 explains 
the daily price data and presents the summary statistics. Section 4 
discusses the methodology employed. Section 5 reports the results; 
and section 6 provides the concluding remarks.

2. ELECTRICITY TRADING IN ERCOT

Prior to the establishment of the Nodal Market Design in December 1, 
2010, the ERCOT region was divided into four congestion zones. 
Under the Zonal Market, congestion costs were directly assigned to 
zones and shared by their participants. However, not all congestions 
were zonal. In the Nodal Market Design, the entire ERCOT market is 
divided into 4,000 pricing “nodes,” or points of electricity entry/exit, 
locations where electricity is uploaded by generators or downloaded 
by retailers of electricity. Congestion costs are directly assigned to the 
identified cost causers and resolved more economically and efficiently.3

ERCOT load demand and generation shares among the zones are 
rather similar. With respect to load demand as of 2011, the North 

3 See Texas Office of Public Utility Counsel at http://www.opuc.texas.gov/
ERCOT.html
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Zone is the largest (with about 39% of the total ERCOT load); the 
South and Houston Zones are comparable (27% each), while the 
West Zone is the smallest (7%). The generation capacity among 
the ERCOT zones is similar to the distribution of demand with the 
exception of the large amount of wind capacity in the West Zone. 
The North Zone accounts for approximately 36% of capacity, the 
South Zone 28%, the Houston Zone 22%, and the West Zone 14%. 
The Houston Zone typically imports power, while the West Zone 
typically exports power.

Table 1 presents descriptive statistics for daily day-ahead market 
total energy traded in various ERCOT hubs from January 23, 
2013 to April 5, 2013. North is the largest energy purchaser with 
daily average purchase of 5443.3 MW, while west is the smallest 
purchaser with 249.1 MW. North is also the largest energy seller 
with daily average sale of 2475.2 MW and Houston the smallest 
energy seller with daily average sale of 300.3 MW. All the hubs 
appear to be net importers with the exception of West, which has 
daily average exports of 92 MW.

3. DATA AND DESCRIPTIVE STATISTICS

The data used for this study consist of time-series of daily day-
ahead Locational Marginal Pricing (LMP) in four Trading Hubs in 
ERCOT – Houston, North, South and West Hubs as well as in SPP. 
ERCOT’s day-ahead market was establishment in December 2010. 
Therefore, the sample period covers December 01, 2010 to 
January 31, 2013. The data were originally obtained on an 
hourly basis with 24 trading intervals in each day and with 19032 

observations.4 The 24-h trading intervals were averaged to yield 
793 daily observations in each zone. All data for ERCOT are 
obtained from the Electric Reliability Council of Texas (ERCOT) 
website. The prices for SPP also consist of 793 daily observations 
and were obtained from the SPP website.

Figure 1 provide plots of daily price data in ERCOT and SPP over 
the sample period. ERCOT prices follow similar patterns across 
the four hubs and are more stable relative to prices in SPP. They, 
however, are subject to a limited number of sharp price jumps. In 
particular, four price jumps are noticeable: The first price spike 
is on February 3rd, 2011, the second is between August 3th and 
August 6th, 2011, the third between August 8th and August 10th, 
2011 and the final spike between August 23rd and August 29th, 2011. 
These periods were marked by an ice storm5, heat waves6, severe 
thunderstorms7 and severe storms8 respectively in parts of Texas.

Table 2 presents the summary of descriptive statistics for daily 
prices and their natural logarithms. Six things are noticeable from 
this Table 1. The average day-ahead electricity prices for the four 

4 Using hourly data comes with a number of challenges. In particular, my 
hourly price data are highly serially correlated and it had a large data which 
made it very difficult to model. Using daily prices removes a lot of the serial 
correlation and produces a more parsimonious model.

5 See http://www.srh.noaa.gov/crp/?n=feb2011_icestorm
6 See http://www.reuters.com/article/2011/08/04/us-utilities-ercot-heatwave-

idUSTRE7736OT20110804
7 See http://www.srh.noaa.gov/ama/?n=aug9reports
8 See http://www.srh.noaa.gov/crp/?n=aug252011severe

Figure 1: Plots of electricity prices in ERCOT hubs and in SPP

Table 1: Total energy traded in the day-ahead market
Statistics Purchased sold Net import/export

H N S W H N S W H N S W
Mean 1,232.6 5,443.3 1,970.0 249.1 300.3 2,475.2 389.4 341.2 −932.2 −2,968.1 −1,508.0 92.0
Std error 453.7 964.4 332.7 142.5 106.2 619.2 95.2 142.6 499.6 1,118.1 333.5 254.5
Max 487.4 3,815.2 1,238.8 17.1 146.5 1,417.8 185.1 136.1 −1,805.4 −6,953.0 −2,327.3 −542.1
Min 2,004.8 8,784.7 2,602.8 678.2 643.9 3.2 577.4 779.8 −38.2 −1,034.0 −741.2 707.6
Notes. Purchases and sales are in units of Mega Watts. H: Houston hub, N: North hub, S: South hub, W: West hub
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hubs range from $32.76/MWH (West) to $36.08/MWH (Houston). 
The highest average prices are in Houston ($36.08/MWH) and 
North ($36.02/MWH). (2) The standard deviation of electricity 
prices ranges from $88.92 (South) to $90.63 (West). (3) The 
coefficient of variation, which measures the degree of price 
variation relative to the mean, is in the range of 1.05–1.21. On 
this basis, prices in Houston and South are less variable than 
those of West and North. (4) All prices are positively skewed, 
ranging from 19.15 (West) to 19.75 (South), indicating asymmetry 
in prices and a greater likelihood of large price increases than 
price falls. (4) The kurtosis is also large, ranging from 439.32 
for West to 462.17 for South, which exceeds three, suggesting 
fat tails in the distribution. (5) The calculated Jarque–Bera 
statistics and corresponding p-values in Table 2 rejects the null 
hypothesis that the distribution of day-ahead electricity prices is 
normally distributed. (6) The respective Augmented Dickey-Fuller 
(ADF) statistics rejects the null hypothesis of non-stationarity at 
0.01 significance level. The SPP price also follows the similar 
distributional characteristics but appears less volatile.

4. MODEL SPECIFICATION

Electricity prices while stationary, have a long memory. This is 
reflected in the autocorrelation of price series, which does not die 
out fast enough.9 Any modeling of electricity prices should account 
for the existence of such a long memory. Thus, our modeling 
strategy consists of three steps. First, we test for fractional 
integration in each price series following the non-parametric 
procedure proposed by Robinson (1992), estimate the differencing 
parameter, and appropriately account for long-memory by 
fractional differencing each price series. Second, we model the 
behavior of mean prices using a vector autoregressive (VAR) 
model. This allows for investigation of own and cross-market 
spillovers in prices using tests of causality and impulse response 
functions. The VAR model also account for two aspects of daily 
electricity prices: (a) prices are subject to day-of-the-week effect as 

9 In the original daily data, even after adding 12 lags there was evidence 
of serial correlation. We use fractional differencing to account for this 
persistence. 

 See http://www.estima.com/forum/viewtopic.php?f=7&t=1541&p=5715&
hilit=fractional#p5715 for how fractional differencing is done.

they differ between weekdays and other days of the week including 
holidays and weekends. We account for these differences using a 
day-of-the-week dummy variable; (b) daily prices are subject to 
a limited number of spikes, which are also accounted for using a 
dummy variable.10 The resulting VAR model is,

0 1 1 ...

| ~ (0, )
− −= + + + +t t k t k t t

t t t

P A A P A P BX

D H
 (1)

where Pt is the vector of fractionally-differenced log of 
electricity prices in ERCOT and SPP; Ai(i=1,……k) are 
parameter matrices, capturing own and cross-market effects; 
Xt is the vector of exogenous variables including day-of-
the-week and price spike dummy variables; εt is a vector of 
serially uncorrelated innovations with zero mean and variance-
covariance matrix Ht.

We examine the behavior of Ht, and the possibility of spillovers 
in volatility across markets, using three alternative multivariate 
generalized autoregressive conditional heteroskedastistic (MGARCH) 
models – the BEKK model of Engle and Kroner (1995), the constant 
conditional correlation model of Bollerslev (1990), and the dynamic 
conditional correlation model of Engle (2002). The BEKK (Engle and 
Kroner, 1995) model assumes the conditional variance-covariance 
matrix Htdepends on the squares and cross products of innovations 
εt as well as the lagged volatility and cross-market volatility,Ht-1, in 
all markets. We follow the BEKK model of the form:

' ' '
1 1  − −= + +t t t tH C C A A B H Bε ε  (2)

The variance-covariance matrix of equations depends on the 
squares and cross products of one-period lagged innovations, εt-1, 
and one-period lagged volatility, Ht-1, for each market. cij are 
elements of an m × m symmetric matrix of constants C, the 
elements aij of the symmetric m × m matrix A measure the degree 
of innovation from marketi to market j, and the elements bij of 
the symmetric m × m matrix B reflect persistence in conditional 
volatility between market i and market j.

10 We treat price changes that exceed 3 standard deviations or more as 
outliers.

Table 2: Summary statistics of daily day-ahead prices ($/MW h) and natural logarithms of day ahead prices
Statistics Day ahead electricity prices Log of day ahead electricity prices

H N S W SPP H N S W SPP
Mean 36.08 36.02 35.92 32.88 26.81 3.44 3.43 3.44 3.27 3.25
Median 28.47 28.36 28.62 25.85 25.55 3.35 3.34 3.35 3.25 3.24
Maximum 445.85 474.03 450.45 475.85 56.00 6.10 6.16 6.11 6.17 4.03
Minimum 17.71 17.72 17.69 0.17 11.79 2.87 2.87 2.87 −1.75 2.47
Std. Dev. 37.94 38.69 38.13 39.71 7.27 0.41 0.42 0.41 0.60 0.26
Skewness 7.45 7.48 7.45 7.20 0.88 3.17 3.15 3.24 −0.51 0.06
Kurtosis 66.28 67.42 66.34 63.89 4.10 16.98 16.69 17.42 17.60 3.04
CV 1.05 1.07 1.06 1.21 0.27 0.12 0.12 0.12 0.18 0.08
Jarque-Bera 139,625 144,527 139,886 129,384 141 7,787 7,509 8,258 7,082 0.56
Probability (0.00)* (0.00)* (0.00)* (0.00)* (0.00)* (0.00)* (0.00)* (0.00)* (0.00)* −0.75
ADF −7.02 −7.04 −8.08 −7.00 −3.53 −6.30 −6.28 −6.46 −6.26 −3.53
prob (0.00)* (0.00)* (0.00)* (0.00)* (0.00)* (0.00)* (0.00)* (0.00)* (0.00)* −0.75
Observations 793 793 793 793 793 793 793 793 793 793
Prices are in units of Mega Watts Hours. H: Houston hub; N=North hub; S=South hub; W=West hub. P values in parentheses. Significant at 5% is designated by a *
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Bollerslev (1990) proposes a constant conditional correlation 
(CCC) MGARCH model. This model assumes constant conditional 
correlations through time. The conditional covariance matrix Ht 
may be expressed as:

Ht=Dt RDt (3)

whereDt is an m × m diagonal matrix with elements 
√hit,i=1,2,….,m denoting the conditional volatilities of electricity 
prices. That is, 

1 ( | )−=it it th Var ε Ω

hit. Similarly,R is a symmetric m × m matrix representing 
conditional correlations between the ith and the jth prices. That 
is, -1≤ρij≤1 and ρij=1 for i=j And

    , 1, , ; 1, .,= = …… = + ……ijt
ij

iit jjt

h
j m i j m

h h
ρ =t t t tH D R D  (4)

Engle (2002) extends the CCC to dynamic conditional correlation 
(DCC) model by allowing a time-varying correlation. The model 
assumes that each conditional variance term follows a univariate 
GARCH process. Thus it has the flexibility of univariate GARCH 
processes coupled with parsimonious parametric models for 
the correlations. The conditional covariance matrix Ht may be 
expressed as:

Ht=Dt Rt Dt (5)

whereDt is anm × m diagonal matrix with elements√hit,i=1,2,….,m 
denoting the conditional volatilities of electricity prices. That is 

1 ( | )−=it it th Var ε Ω . Similarly,Rt is a symmetricm × m matrix 
representing the time varying conditional correlations between the 
ith and the jth prices. That is, -1≤ρij≤1 and ρij=1 for i=j

More specifically, the(i,j)th conditional correlation is modeled as:

 , = ijt
ijt

iit jjt

q

q q
ρ

whereqijt are given by ( )1 2 1 , 1 21 −= −∅ −∅ +∅ +∅  ijt ij ij t it jtq qρ ε ε  
 (6)

Here ijρ  is the (i,j)th unconditional correlation, ∅1,∅2 are 
parameters such that∅1,∅2<1 and , i jε ε  are the standardized 
innovations.

5. EMPIRICAL RESULTS

We begin with an examination of the spillover in (fractionally 
differenced) prices using a VAR model. Using a VAR (3) process 
specified by the Hannan-Quinn criterion, we carry out tests of 
causality among electricity prices, and examine the patterns of 
impulse responses to own as well as cross-market shocks.

Table 3 reports the F-statistics and the corresponding significance 
levels (in parentheses) associated with tests of causality in 
electricity prices associated with the five-variable VAR (3) model, 
which includes prices in the four ERCOT hubs and in SPP. Three 
patterns are evident: (1) Prices in most markets are persistent as 
reflected by the joint significance of the estimated coefficients on 
their own past prices. Thus, there is evidence of over-time price 
spillovers in these markets. Exceptions are prices in South and 
in Houston where the effects of own past prices are not jointly 
significant. (2) Prices in each of the ERCOT hubs are significantly 
affected by prices in at least one of the other hubs, reflecting 
the possibility of cross-market spillovers. This pattern of cross-
market spillover is reflective of close proximity and existence of 
interconnections among the hubs. (3) SPP prices Granger-cause 
prices in each of the ERCOT hubs, but ERCOT prices do not 
Granger-cause SPP prices. These findings broadly suggest the 
existence of price spillovers over time and across ERCOT hubs.

Figure 2 plots the impulse response of prices to their own shocks 
as well as to shocks in each of other prices along with their 95% 
confidence bounds. Four patterns of responses are evident: First, 
the response of prices to their own shocks (figures along the 
diagonal) are positive in the first day but oscillates and dies out 
after that. Second, the response of ERCOT prices to shocks in 
SPP (Column 1) while positive, dies out after two days. Third, 
the response of SPP prices to shocks in ERCOT (Row 1) is not 
significantly different from zero. Finally, the response of each 
ERCOT price to cross-market innovations in other ERCOT prices 
varies: (a) Each ERCOT price responds to price shocks in the North 
(Column 2). Thus, events in the North hub have a significant effect 
on prices across all markets. (b) Prices do not respond to shocks in 
West (Column 3), South (Column 4) and Houston (Column 5). In 
summary, impulse response functions suggest rapid dissemination 
of price information across ERCOT hubs, which is consistent with 
an efficient operation of the market.

Next, we examine the patterns of conditional volatility in prices, the 
possibility of volatility spillover across markets, and the dynamics 
of conditional correlations in prices across the ERCOT hubs and the 
SPP. We begin with the estimation results for the BEKK-MGARCH 

Table 3: F-tests of causality in prices
Hubs Dependent variables

SPP N W S H
SPP 2.95 (0.03)* 5.39 (0.00)* 2.99 (0.030)* 4.20 (0.01)* 4.40 (0.00)*
N 1.12 (0.34) 3.44 (0.02)* 3.82 (0.01)* 5.04 ( 0.00)* 5.11 (0.00)*
W 2.28 (0.08) 4.22 (0.01)* 15.04 (0.00)* 5.20 (0.00)* 4.32 (0.01)*
S 0.40 (0.75) 1.17 (0.32) 0.37 ( 0.77) 1.84 (0.14) 1.09 ( 0.35)
H  0.09 (0.97) 0.35 (0.79) 1.99 (0.11) 0.60 (0.61) 1.18 (0.32)
Tests of causality are based on a VAR (3). The lag length was chosen using HQ criterion. P values in parentheses. Significant at 5% or better is designated by a *
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model, which are reported in Table 4. Here, A(i.,) and B(i.,) are the 
corresponding ARCH and GARCH parameters associated with hub 
i. The A(i.,) ARCH parameters captures the responses of volatility 
in market i to squared standardized innovations in each of the five 
markets. For example, the estimated ARCH response for North 
(i=2) to its own innovations is A(2,2) = 1.02; to innovations in 
SPP is A(2,1) = -0.07; to innovations in West is A(2,3)=0.45; to 
innovations in South is A(2,4)=0.12; and to innovations in Houston 
is A(2,5)=0.09. Thus the ARCH response of North to all ERCOT 
shocks is positive and significant but is negative and insignificant 
to shocks from SPP. The largest ARCH response, however, is to 
its own innovations.

The ARCH effects demonstrate three unique patterns: (1) The 
ARCH response to own innovations are positive and statistically 
significant in all hubs but Houston, which is positive but 
statistically insignificant. (2) The ARCH response to cross-market 
innovations varies across ERCOT hubs: North and South respond 
positively and significantly to other ERCOT shocks; Houston 
responds negatively; and the response of West is statistically 
insignificant. And (3) the ARCH response of SPP to cross-market 
shocks is negative and statistically significant. In summary, with 
the exception of West, all markets demonstrate a significant degree 
of over-time and cross-market ARCH effects. Similarly, the B(i.,) 
GARCH parameters captures the responses of volatility in market i 
to past volatility in each of the five markets. For example, the 
estimated GARCH response for North (i=2) to its own volatility 
is B(2,2) = 0.71; to volatility in SPP is B(2,1) = -0.07; to volatility 

in West is B(2,3)=1.86; to volatility in South is B(2,4)=0.05; and 
to volatility in Houston is B(2,5)=-0.04. Thus, North responds 
positively and significantly to past volatility across all ERCOT 
hubs with the exception of the volatility in Houston. It’s response 
to past volatility in SPP, however, is statistically insignificant.

The GARCH effects reveal three patterns: (1) The GARCH 
response to own past volatility is positive and significant in 
all but West, suggesting spillover in volatility over time. The 
latter is significantly negative and thus counterintuitive. (2) The 
GARCH response to cross-market volatility varies across hubs: 
South responds positively and significantly to all past volatilities 
in ERCOT and SPP but West; North responds positively to all 
but SPP and Houston; West and Houston respond negatively 
to all. And (3) the GARCH responses of SPP to past ERCOT 
volatilities are statistically insignificant. In summary, North and 
South demonstrate a noticeable degree of cross-market volatility 
spillovers which are positive and statistically significant. As for 
the other three prices, the negative findings are counterintuitive. 
There is also no evidence of significant volatility spillover from 
ERCOT to SPP, which reflects the segmentation of the two ISOs.

Next, we examine the estimated patterns of conditional correlations 
between electricity prices across ERCOT and SPP markets using the 
CCC model of Bollerslev (1990). The results are reported in Table 5. 
All estimated conditional correlations are positive and significantly 
different from zero at better than 1% significance level. However, 
three patterns of correlation emerge: (a) high correlations of 0.95 or 

Figure 2: Impulse response functions
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more occur between Houston and South, Houston and North, and 
South and North; Mid-range correlations occur between West and 
Houston (0.63), West and North (0.62) and West and South (0.61); 
and low correlations occur between ERCOT markets and SPP (North 
and SPP (0.28)); West and SPP (0.38)); South and SPP (0.29)); and 
Houston and SPP (0.29)). The high conditional correlations across 
ERCOT hubs reflect the presence of interconnectivity and close 
proximity between these hubs. The low conditional correlations 
between ERCOT and SPP reflect the absence of direct interconnectors 
between the two ISOs. Midrange correlations may reflect the relative 
distance and potential bottlenecks in the transmission system between 
the West and other ERCOT hubs.

Table 6 reports the parameter estimates for the DCC model. Four 
patterns are evident: (1) the estimated ARCH effects (α) are all 
positive and significant but differ significantly between SPP and 
ERCOT hubs. They range from 0.66 to 0.70 across ERCOT hubs 
but only 0.14 for SPP. (2) The estimated GARCH effects (β) are 
also positive and significant and range from the high of 0.80 for SPP 
to low of 0.53 for North and Houston. Thus, conditional volatility 
for SPP has a small ARCH effect but relatively large GARCH 
effect. As for ERCOT hubs, the estimated values of ARCH and 
GARCH parameters are fairly similar. (3) The estimated persistent 
parameter (α+β) varies across SPP and ERCOT hubs. It is less than 
one for SPP, suggesting a mean-reverting conditional volatility 
process. It is greater than one across all ERCOT hubs, implying 
that volatility shocks in these markets are permanent in nature. 
Finally, the estimated ∅1 and ∅2 parameters associated with the 
dynamic conditional correlations are both positive and statistically 
significant, suggesting that the assumption of constant conditional 
correlation does not hold.

Figure 3 plots the resulting time-varying conditional correlations 
associated with the DCC model. The dynamic correlations exhibit 
three patterns: (1) High and stable conditional correlations exist 
between the triangle consisting of North and South, North and 
Houston, and South and Houston. There is, however, sharp drops 
in correlations around the 100th, 150th and 750th observations. 
Further inspection reveals that these observations are marked by 
natural events which occurred in all or part of Texas. The 100th and 
150th periods, which correspond to May 8th 2011 and April 
28th 2011respectively, witnessed tornadoes in parts of Texas.11,12 
The 750th period falls on December 19th 2012 on which day Texas 
witnessed a severe dust storm.13 These events may explain the 
sharp drops in correlations of prices across ERCOT hubs. (2) 
There is moderate correlation between West and the other ERCOT 
hubs but North. However, correlations are more variable. They 
drop to about -0.4 around the 100th and 150th periods, rise back 
up and remain around the average of 0.63 for the remainder of 
the period. (3) The correlations between SPP and ERCOT hubs 
are mostly positive but highly variable. The average correlation 
is around 0.28, and there is no specific pattern of correlation 
between the markets. In summary, the strong significant positive 
conditional correlations between the ERCOT hubs together with 
the mean-reverting plots of the dynamic conditional correlations 
over the sample period indicate that ERCOT has fostered an 
integrated and stable day-ahead electricity market within its 
region. Also, its low correlation with SPP also affirms the fact 
that ERCOT is not well interconnected with markets outside its 

11 See http://www.srh.noaa.gov/shv/events/select.php?date=03082011_1
12 See http://en.wikipedia.org/wiki/April_25%E2%80%9328,_2011_tornado_

outbreak
13 See http://www.srh.weather.gov/lub/?n=events-2012-20121219-dust

Table 4: Parameter estimates for multivariate GARCH BEKK model
Variable SPP (i=1) N (i=2) W (i=3) S (i=4) H (i=5)

Coeff Coeff Coeff Coeff Coeff
C (i, 1) 0.15 (0.00)* 0.03 (0.00)* 0.03 (0.00)* 0.02 (0.00)* 0.03 (0.00)*
i, 2) 0.03 (0.00)* 0.06 (0.00)* 0.06 (0.00)* 0.06 (0.00)* 0.06 (0.00)*
C (i, 3) 0.03 (0.00)* 0.06 (0.00)* 0.00 (0.69) 0.00 (0.24) 0.00 (0.01)*
C (i, 4) 0.02 (0.00)* 0.06 (0.00)* 0.00 (0.24) 0.00 (0.98) 0.00 (0.98)
C (i, 5) 0.03 (0.00)* 0.06 (0.00)* 0.00 (0.01)* 0.00 (0.98) 0.00 (1.00)
A (i, 1) 0.13 (0.00)* -0.07 (0.79) 0.01 (0.53) 0.98 (0.00)* -0.83 (0.01)*
A (i, 2) -0.06 (0.01)* 1.02 (0.00)* 0.00 (0.90) 0.41 (0.01)* -0.76 (0.00)*
A (i, 3) -0.07 (0.01)* 0.45 (0.00)* 0.44 (0.00)* 0.76 (0.00)* -0.98 (0.00)*
A (i, 4) -0.06 (0.02)* 0.12 (0.00)* -0.01 (0.38) 0.98 (0.00)* -0.48 (0.00)*
A (i, 5) -0.07 (0.00)* 0.09 (0.00)* 0.00 (0.63) 0.38 (0.01)* 0.17 (0.26)
B (i, 1) 0.20 (0.14) -0.07 (0.62) -0.13 (0.00)* 0.58 (0.01)* -0.45 (0.03)*
B (i, 2) -0.12 (0.18) 0.71 (0.00)* -0.05 (0.00)* 0.13 (0.02)* -0.13 (0.01)*
B (i, 3) -0.10 (0.32) 1.86 (0.00)* -1.00 (0.00)* 0.14 (0.55) -0.36 (0.15)*
B (i, 4) -0.02 (0.84) 0.05 (0.04)* -0.07 (0.00)* 0.73 (0.00)* -0.01 (0.87)*
B (i, 5) -0.12 (0.21) -0.04 (0.00)* -0.06 (0.00)* 0.12 (0.02)* 0.65 (0.00)*
Notes. P values in parentheses. Significant at 5% is designated by a *. C (i,.) are constants; A (i,.) are coefficients of ARCH effect; B (i,.) are coefficients of GARCH effect

Table 5: Conditional correlations (Volatility spillover): CCC-MGARCH
 Hubs SPP N W S H
SPP  0.29 (0.00)* 0.38 (0.00)* 0.29 (0.00)* 0.29 (0.00)*
N   0.62 (0.00)* 0.95 (0.00)* 0.97 (0.00)*
W    0.61 (0.00)* 0.63 (0.00)*
S     0.97 (0.00)*
Notes. P values in parentheses. Significant at 5% or better is designated by a *
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region. This finding is consistent with (Mohammadi and Loomis, 
2012) where they found low correlations of ERCOT with NY, 
NE and PJMP markets.

6. CONCLUSIONS

This paper examined the price and volatility inter-relationships in 
the day ahead electricity market among the four ERCOT pricing 
hubs of Houston, North, South and West. It also examined the 
price and volatility inter-relationships between the ERCOT hubs 
and SPP. The data consisted of daily LMP prices for the period 
December 1st 2010 to January 31st 2013.

The results of VAR analyses revealed significant over-time 
spillovers in all the EROT hubs and SPP and cross-market 
spillovers in North and SPP. These are reflected in tests of causality 
and impulse response functions. However, impulses are relatively 
short and disappear after one to two days. ERCOT prices responds 
to shocks in SPP, but SPP prices do not respond to any of the 
shocks in ERCOT prices.

We examined the dynamics of volatility relations using three 
alternative multivariate GARCH models - the BEKK, CCC and 
DCC models. The BEKK suggests own ARCH and GARCH 
effects are positive and statistically significant in North and South. 

Table 6: Conditional correlations (Volatility spillover): DCC-MGARCH
Variable SPP N W S H
C 0.00 (0.04)* 0.00 (0.00)* 0.00 (0.01)* 0.00 (0.00)* 0.00 (0.00)*
α 0.14 (0.00)* 0.67 (0.00)* 0.70 (0.00)* 0.66 (0.00)* 0.67 (0.00)*
β 0.80 (0.00)* 0.53 (0.00)* 0.64 (0.00)* 0.54 (0.00)* 0.53 (0.00)*
α+β 0.94 1.2 1.34 1.2 1.2
∅1

0.15 (0.00)*  
∅2

0.83 (0.00)*
Notes. P values in parentheses. Significant at 5% or better is designated by a *

Figure 3: Time-varying conditional correlations between markets. (a) High conditional correlations, (b) Medium conditional correlation (c)

a

b

c
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The conditional correlation volatility spillovers of the CCC model 
are positive and significant for all pairs of markets, indicating the 
presence of positive volatility effects between pairs of markets. 
The highest conditional correlations are evident between the 
ERCOT markets. However, correlation is low between ERCOT 
hubs and SPP due to lack of established interconnections. The DCC 
model also suggests time-varying conditional correlations in the 
ERCOT hubs. All ARCH and GARCH coefficients are positive 
and significant. The conditional volatility for SPP has a small 
ARCH effect but relatively large GARCH effect while ERCOT 
hubs have ARCH and GARCH parameters which are fairly similar.

The findings of this study may have implications on the way 
market participants, retailers and generators anticipate electricity 
price volatility and thus incorporate that in their bids in the day-
ahead market. Furthermore, the evaluation of the price, volatility 
and cross-market interactions provides evidence in support 
of significant electricity price volatility and this may provide 
policy makers with greater understanding of the day-ahead 
electricity dynamics, the efficient distribution of energy within 
and outside ERCOT and policy inputs for the construction of 
new interconnectors as well as for preparation of guidelines for 
the reform of existing markets.
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