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ABSTRACT 

This study aims to identify the socioeconomic drivers of nitrogen oxide (NOx) emissions and their spatial relationships in 31 Chinese regions in 2022 

using spatial econometric models. Our research incorporates a comprehensive set of variables, including electricity consumption, per capita household 

consumption expenditure (PCEXP), Expenditure on research and development (R&D), numbers of vehicle in operation, population density, green- 

covered areas, land use patterns, and cultivated land area. Following a comparative analysis, we selected the spatial Durbin model (SDM) as the most 

appropriate statistical model for analyzing provincial NOx emissions. Results indicate that electricity consumption and land use patterns are significant 

contributors to NOx emissions. Specifically, we found that a one billion kilowatt-hour (kWh) increase in electricity consumption corresponds to an 

increase of approximately 367.3 tons of NOx emissions within the same region. Similarly; a one-million-hectare expansion in land used for urban, 

rural, industrial, and mining activities is associated with an increase of about 161.9 thousand tons of NOx emissions in the same region. Importantly, 

our analysis revealed positive spillover effects for PCEXP and cultivated land area, suggesting that changes in these factors in one region can influence 

NOx emissions in neighboring regions. Contrary to some previous findings and prevailing assumptions, urban population density and green-covered 

areas did not show significant direct or indirect impacts on NOx emissions. This unexpected result challenges existing notions about urbanization and 

green space effects on air quality, warranting further investigation. Based on these findings, the study proposes recommendations for mitigating NOx 

emissions and improving air quality in Chinese regions. 

Keywords: Air Pollution; NOx Emissions; Economic Development; Energy Consumption; China; Spatial Dependence 
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1. INTRODUCTION 

As China continues to navigate its role as a global economic 

powerhouse, it faces the critical task of addressing the accompanying 

environmental issues to ensure long-term, sustainable development, 

Abdelwahab et al. (2024). The gravity of this challenge is 

underscored by recent data from the Community Emissions Data 

System (CEDS) 2024 processed by Our World in Data, which 

highlights China’s persistent status as the world’s leading emitter of 

air pollutants over the study period from 2017 to 2022. Particularly 

concerning are the nation’s NOx emissions, which reached a 

staggering 19.6 million tons in 2022 and 23.49 million tons in 

2017, accounting for 17.3% and 19.0% of global NOx emissions 

respectively. 
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However, according to the 2022 China Ecological Environment 

Status Bulletin, published by the Ministry of Ecology and 

Environment, a majority of China’s urban centers have made 

significant strides in air quality improvement. The report 

indicates that 213 out of 339 cities —representing 62.8% of 

the total—successfully met the established ambient air quality 

standards. While, the remaining 126 cities, accounting for 

37.2%, still grappled with air quality levels exceeding the 

stipulated standards, Yan et al. (2024). IHME, Global Burden 

of Disease (2024) - with minor processing by Our World in 

Data – highlighted that more than 2.35 million people died in 

China because of air pollution in 2021. On a global scale, The 

World Health Organization (WHO) estimates that approximately 
4.2 million premature deaths occur each year as a result of 

exposure to outdoor air pollution, with the majority of these 

fatalities occurring in low- and middle-income countries, 

according to Wu and Liu (2023). 

 

While this data reflects notable progress in China’s battle against 

air pollution, it also underscores the persistent challenges that 

require immediate and focused action. The substantial number of 

cities still failing to meet air quality benchmarks highlights the 

ongoing need for robust environmental policies and concerted 

efforts to address the complexities of urban air pollution across 

the nation. 

 

Understanding the main determinants of NOx emissions is crucial 

for developing effective strategies to mitigate their impact. This 

literature review investigates the relationship between NOx 

emissions and two key factors of interest in our study: economic 

development and built environment characteristics. 

 

The relationship between economic development and pollution 

emissions has been extensively explored in academic literature, 

with many studies grounded in the Environmental Kuznets Curve 

(EKC) hypothesis, first proposed by Grossman and Krueger 

(1991). This hypothesis posits an inverted U-shaped relationship 

between economic growth and environmental degradation. 

Initially, as economies develop, pollutant emissions increase and 

air quality deteriorates. However, upon reaching a critical point 

in economic development, further growth leads to a reduction in 

pollution and an improvement in environmental conditions, Zhou 

et al. (2018), Zhang et al. (2019a), and Han et al. (2021). 

Numerous studies have been devoted to investigating and 

validating the EKC hypothesis, including the works of Kharbach 

and Chfadi (2017) and Gill et al. (2018). However, the existence 

of the EKC remains a subject of debate within the scientific 

community. Research findings vary significantly depending on 

the geographical focus, pollutants examined, and methodologies 

employed. Consequently, a definitive consensus on the EKC 

hypothesis has yet to be established, highlighting the complex and 

nuanced nature of the relationship between economic growth and 

environmental impact. 

In the following, we review the relationship between some 

economic development indicators and NOx emissions highlighting 

the complex interplay of these factors. 

Industrial Structure and Energy Consumption: The composition 

of a country’s industrial sector and its energy consumption 

patterns significantly influence NOx emissions. For example, 

Heavy industries, particularly in the manufacturing and energy 

sectors, are major contributors to NOx emissions, Xiang et al. 

(2024) and Van Vuuren et al. (2011). On the other hand, several 

studies demonstrated that the transition from coal to cleaner 

energy sources has been shown to reduce pollution emissions, for 

example, the studies conducted by Song et al. (2021) and He et al. 

(2023) find that redirecting and advancing technological progress 

accompanied economic development contribute to carbon-free 

transition solutions. 

 

Urbanization and Economic Transitions: Rapid urbanization, often 

accompanying economic development, has complex effects on 

NOx emissions. Urban areas typically have higher concentrations 

of NOx due to increased traffic, human daily life, and industrial 

activities, Diao et al. (2018). However, urbanization can also lead 

to more efficient resource use and potentially lower per capita 

emissions. In this context, Poumanyvong and Kaneko (2010) 

conducted an empirical study examining the impact of urbanization 

on energy consumption and CO2 emissions across different 

stages of economic development. Their research employed the 

Stochastic Impacts by Regression on Population, Affluence, 

and Technology (STIRPAT) model, analyzing a balanced panel 

dataset comprising 99 countries over 30 years from 1975 to 2005. 

Contrary to conventional assumptions, the research revealed that 

urbanization’s effect on energy consumption and emissions is 

not uniform across different stages of economic development. In 

low-income regions, urbanization correlates with decreased energy 

use. Conversely, in middle- and high-income areas, urbanization 

is associated with increased energy consumption. This nuanced 

understanding challenges one-size-fits-all approaches to urban 

environmental policies. Furthermore, the study highlights a 

significant trend in developing countries: the transition from 

manufacturing-based to service-based economies. This shift may 

have notable positive implications for NOx emissions patterns, 

as service industries generally have lower emission intensities 

compared to heavy manufacturing. 

 

Trade and Foreign Direct Investment (FDI) play significant roles 

in shaping global NOx emissions patterns, primarily through 

the mechanism described by the pollution haven hypothesis. 

This theory, as elaborated by Levinson and Taylor (2008), 

suggests that multinational corporations from industrialized 

nations often seek to establish operations in countries offering 

the most cost-effective combination of resources, labor, and 

regulatory environments. The pollution haven hypothesis posits 

that companies tend to relocate their polluting industries to 

nations with less stringent environmental regulations, typically 

developing countries eager for economic growth. This relocation 

occurs because stricter environmental standards in developed 

nations increase operational costs, making countries with lax 

regulations more attractive for investment. Consequently, this 

can lead to a concentration of polluting industries in areas with 

weak environmental enforcement, potentially exacerbating local 

and global environmental degradation. However, the relationship 

between FDI and environmental impact is not uniformly negative. 
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While there are concerns that the environmental costs of increased 

emissions might offset the economic benefits of FDI, an alternative 

perspective exists. FDI can potentially contribute to environmental 

improvement if it brings with it green technologies and sustainable 

practices. These advanced technologies and methods can create 

positive spillover effects, encouraging domestic industries to adopt 

cleaner production processes, Demena and Afesorgbor (2020). 

 

The dual nature of FDI’s environmental impact underscores 

the complexity of the issue. It highlights the need for careful 

policy consideration to balance the economic benefits of foreign 

investment with environmental protection. Effective strategies 

might include incentivizing green FDI, promoting technology 

transfer, and fostering international cooperation to standardize 

environmental regulations, thereby mitigating the negative effects 

of the pollution haven phenomenon while maximizing the potential 

for positive environmental outcomes and faster economic growth, 

Mauro (2024). Accordingly, countries which involve renewable 

energy development and enhancing green industrial strategies 

that boost productivity, have a competitive advantage in the 

global markets through international trade, and attract more FDI 

Cardinale et al. (2024). 

Scientific Research: investment in R&D is a key driver in 

addressing environmental issues, particularly when it comes 

to reducing pollution emissions. Funding allocated to research 

and development (R&D) catalyzes environmental progress. 

Governments frequently channel these financial resources into 

several critical areas, including; the advancement of eco-friendly 

technologies, enhancement of industrial processes for improved 

efficiency, and implementation of more effective pollution control 

strategies. This strategic allocation of R&D funds underscores 

the vital link between scientific progress and environmental 

stewardship. As Abdelwahab et al. (2024) highlighted in their 

study, such targeted investment in R&D plays a pivotal role in our 

collective efforts to combat environmental challenges. By fostering 

scientific breakthroughs and technological advancements, R&D 

expenditure becomes a powerful tool in our arsenal against 

environmental degradation, paving the way for a more sustainable 

future. 

In general, we can say that although economic growth has 

historically been associated with increased emissions, the pathway 

is not deterministic. Policies that promote cleaner technologies, 

efficient resource use, and sustainable urban development can 

potentially decouple economic growth from NOx emissions. 

 

As for the effect of built environment characteristics on NOx 

emissions, it is a crucial area of study in urban planning and 

environmental science. Here’s an overview of this topic: 

 

Urban population density typically correlates with pollution 

emissions. Higher-density areas often have increased traffic 

congestion, leading to higher vehicular emissions, Tsanakas 

(2019) and Borck and Schrauth (2021). However, compact 

urban forms can reduce travel distances, potentially decreasing 

overall emissions. The concept of the “compact city” or “city 

of short distances” has emerged as a prominent urban planning 

strategy with significant implications for NOx emissions. This 

model promotes relatively high residential density combined 

with mixed-use development, where various urban activities and 

infrastructure facilities are integrated within walkable distances. 

The compact city aims to create an intensified urban form that can 

potentially mitigate NOx emissions through several mechanisms: 

(1) Reduced Vehicle Dependency: By locating urban activities 

closer together, the compact city model encourages access to 

services and facilities via public transport, walking, and cycling. 

This reduction in automobile reliance can directly decrease NOx 

emissions from vehicular sources. (2) Efficient Infrastructure: The 

concentrated nature of compact cities allows for more efficient 

utility and infrastructure provision, potentially reducing energy 

consumption and associated NOx emissions. 

 

Transportation Infrastructure: Road network design significantly 

impacts traffic flow and, consequently, pollutant emissions. 

Previous studies have shown that air pollution levels are 

significantly affected by road width and the proportion of roads in a 

given area, Habermann et al. (2015), Weichenthal et al. (2014), and 

Tang et al. (2013). Additionally, public transportation systems can 

reduce private vehicle use, leading to lower pollutant emissions. 

Bike lanes and pedestrian-friendly infrastructure can encourage 

non-motorized transport, further reducing emissions. 

 

The subsequent sections are structured as follows: Section 

2 outlines the study’s methodology and the sources of data. 

Section 3 highlights the key findings of our analysis, including 

statistical outcomes. Section 4 offers a comprehensive discussion 

of our empirical results, contextualizing them within the existing 

literature and exploring their implications. Section 5 presents the 

limitations of our study. The final section summarizes the main 

conclusions drawn from our study and proposes evidence-based 

recommendations for policymakers and future research directions. 

 

2. METHODS 

2.1. Data Description 

To model Provincial NOx emissions, particularly in China, we 

include eight main explanatory variables across 31 geographical 

regions for the year 2022, noting that data for Taiwan, Hong Kong, 

and Macao is unavailable. This information is derived from the 

China Statistical Yearbooks, published by the National Bureau of 

Statistics of China. For a general overview of our data, Table 1 

presents the descriptive statistics for these variables. 

 

According to Table 1, NOx emissions in China exhibit a mean of 

290.5 thousand tons, with a substantial standard deviation of 187.7 

thousand tons. Looking more closely at the raw data, regional 

variations were evident in this regard. At the lower end of the 

spectrum, Hainan province reports emissions of 34.9 thousand 

tons, while Shandong province tops the list with 769.6 thousand 

tons. This stark contrast in emissions levels points to considerable 

regional differences in factors influencing NOx production. 

 

The observed variation may be attributed to the diverse stages 

of economic development across China’s regions, a hypothesis 

central to our study. This conjecture is further supported by the 
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Table 1: Descriptive statistics and variable definitions 

Dimension Variable name Measuring unit Average 

value 

Standard 

deviation 

Minimum 

value 

Maximum 

value 

Dependent Y NOx Emissions in Wast Gas thousand metric tons 290.5 187.7 34.9 769.6 

Socio-economic 
factors 

X
1 

Electricity Consumption billion kWh 278.6 202.9 11.9 787.0 

X
2 

PCEXP thousand yuan 24 7.7 15.9 46.0 
 X

3 
R&D Expenditure billion yuan 62.5 79.9 0.2 321.8 

Environmental 

and land use 

factors 

X
4 

Numbers of Vehicles in Operation thousand unit 22.7 16.7 0.9 66.6 

X
5 

Urban Population Density thousand Pearson/sq.km 3.1 1 1.5 5.4 

X
6 

Green-covered Area % of Completed Area 42.3 2.8 36.2 49.8 

 X
7 

Land Used for urban, Rural, 
Industrial, and Mining Activities 

million hectares 1.2 0.7 0.2 2.9 

 X
8 

Cultivated Land Area million hectares 4.1 3.6 0.1 17.1 

 

marked differences in the explanatory variables among these 

regions. Our research aims to delve deeper into these regional 

disparities, examining how economic growth trajectories and 

other factors contribute to the varying levels of NOx emissions. 

By understanding these relationships, we hope to shed light on 

potential strategies for mitigating emissions while accounting for 

regional economic contexts. 

 

2.2. Spatial Visualization of NOx Emissions across 
Chinese Regions 
Figure 1 illustrates an exploration of the spatial distribution of 

NOx emissions across 31 provinces in China for the year 2022. 

The map employs a color gradient to illustrate varying emission 

levels across provinces. Cooler colors (shades of blue) represent 

lower emission intensities, while warmer colors (shades of red) 

indicate higher levels. 

This spatial visualization reveals a distinct geographical pattern 

of NOx emissions in China. “Hot spots,” characterized by the 

accumulation of high emissions, are predominantly clustered in 

the eastern and northern regions of the country. Provinces such 

as Shandong, and Hebei emerge as significant contributors to 

these elevated emission levels. In contrast, “cold spots” or low- 

emission cluster areas are primarily situated in the southern, 

[equation (2)], indicating correlated residuals across locations; 

(c) spatial lag of independent variables [equation (3)], where 

predictors in one area are affected by those in surrounding areas. 

In the modeling process, the first step researchers should take is to 

assess the presence of spatial effects in their data and, if confirmed, 

identify which interaction type(s) to consider. These effects can 

occur individually or in combination, as detailed in Table A1 

(in Appendix). For a visual representation, refer to Figure A1 

(In Appendix). For more detailed information on these concepts, 

the works of Youssef et al. (2020) and Elhorst (2014). 

 

To address the first type of spatial interaction effects, we can use 

the spatial lag model (SLM), which assumes that the dependent 

variable of the unit is directly influenced by the spatially weighted 

dependent variable of neighboring units, Rüttenauer (2022). In 

the SLM, labeled spatial autoregressive (SAR) model or a mixed 

regressive SAR model, spatial autocorrelation is incorporated 

through a spatial lag of the dependent variable. Suppose we 

have spatial units or locations in our analysis. The SLM can be 

expressed as: 

 

y
n 

= λ
0 

W
n 

y
n 

+ X
n 

β
0 

+ ε
n 

(1) 

ε ~iid(0, σ2 I ) 
n n 

southwestern, and northwestern regions. Hainan, Tibet, and 

Qinghai stand out as notable examples of these low-emission 

zones. This spatial distribution may indicate the possibility of 

regional interdependencies in NOx emissions across China. The 

clear demarcation between high and low-emission areas points 

to underlying socioeconomic, industrial, or geographical factors 

influencing pollution levels. Given these findings, it is necessary 

to focus on targeted pollution control measures in specific high- 

emission cluster areas. At the same time, proactive strategies 

should be developed and implemented to reduce the emergence 

of new high-emission areas. 

Where n denotes the number of locations or spatial units, y
n 

is 

an (n×1) vector containing the values of the dependent variable 

across all locations, λ0 is the SAR parameter, W
n 
is an (n× n) spatial 

weight matrix composed of non-negative elements. This matrix 

plays a crucial role in spatial econometrics by quantifying the 

spatial relationships and connectivity between different locations 

in the dataset. W
n
y indicates to the endogenous interaction effects, 

X
n 

is an (n× K) matrix of exogenous independent variables, K 

is the number of independent variables, β0 is a (K×1) vector of 

parameters associated with the explanatory variables in X, ε
n 

is 
an (n×1) vector of disturbances, i.e., ε ~ (0, σ2 I ), and I is an 

2.3. Spatial Regression Models 
NOx air pollutants in China generally display spatial dispersion 

(n × n) identity matrix. 
n n n 

patterns. This spatial dependence among neighboring regions 

indicates the necessity for SRMs that can incorporate interactions 

between various spatial units. Spatial econometrics identifies three 

main types of interaction effects: (a) spatial lag of dependent 

variable [equation (1)], where the value of the dependent variable 

in one location is influenced by the values of the same variable 

in neighboring locations; (b) spatial autocorrelation of error term 

In addition to the SLM, the spatial error model (SEM) is used to 

address the second type of spatial interaction. The SEM can be 

specified as: 

 

y
n 

= X
n 

β
0 

+ ε
n 

ε
n 

= ρ
0 
W

n 
ε

n 
+ v

n 
(2) 



Ebrahim, et al.: Studying the Impact of Socioeconomic and Environmental Factors on Nitrogen Oxide Emissions: Spatial Econometric Modeling 

252 International Journal of Energy Economics and Policy | Vol 15 • Issue 2 • 2025 

 

 

Figure 1: Provincial NOx emissions distribution in 2022 
 

 

Where ρ0 represents a spatial autocorrelation parameter, and v
n 

denotes a spatially uncorrelated disturbance. In this specification, 

we assume that the spatial correlation among units is caused by 

unobserved characteristics, which are either spatially clustered or 

follow a spatial pattern, independent of the included covariates. 

 

To capture the third type of spatial interaction effects, we can utilize 

the spatial lag of X model (SLX). This specification examines 

the exogenous spatial interactions by incorporating W
n 

X
n
, as 

extra independent variables to the traditional multiple regression 

equation. The SLX can be specified as: 

 

y
n 

= X
n 

β
0 

+ W
n 

X
n 

γ
0 

+ ε
n 

(3) 

Where γ0 is analogous to β0 of order (K×1). The indirect spatial 

effects in this model are quantified by the parameter estimates, 

γ
0
, corresponding to the W

n
X

n 
variables. In contrast, the direct 

effects are captured by the traditional parameter estimates, β0, 

corresponding to the X
n 

variables. 

 

Each model addresses different aspects of spatial dependence, 

allowing researchers to select the most appropriate approach based 

on the nature of their data and research questions. 

2.4. Spatial Regression Models Assumptions 
Even though there are different SRMs specifications, there are 

some basic common features for all of them, including: 

 

A1. Assumptions of Spatial Weights Matrices: 

[1] All spatial weights matrices, i.e., W
n 

are non-stochastic 

matrices with zero diagonals. 

[2] The spatial transformation matrices, i.e., (I
n
-λW

n
) are 

invertible on the compact parameter spaces of spatial 
parameters λ and ρ. 

[3] The admissible parameter space for the true spatial 

parameters λ and ρ is[-1, 1]. 

A2. Assumptions of the Error Components: The relevant 
disturbances, i.e. {ε

i
}, i = 1,...,n are iid across i with zero mean 

and finite variance. 

A3. Assumptions on Covariates: The regressors X
n 

are non- 

stochastic and have full column rank and their elements are 
UB in absolute value. 

 

These assumptions are frequently made in spatial econometrics; 

Kelejian and Robinson (1998), and Lee (2004), among others. 

2.5. Our Empirical Framework 
This section outlines the methodological framework supporting 

our research and demonstrates a thorough decision-making process 

crafted to facilitate the selection of the optimal model for spatial 

analysis. The key procedural steps encompass: 

[1] Estimate OLS Regression Model. 

[2] Diagnose multicollinearity among independent variables to 

ensure the model’s robustness and accuracy. 

[3] Construct the spatial weights matrices to incorporate spatial 

interactions and enhance the spatial analysis framework. 

[4] Capture the type of spatial interaction using classical and 

robust Lagrange Multiplier (LM) tests for each spatial weights 

matrix. 

[5] Evaluate model fit by calculating the goodness of fit criteria 

alongside a comprehensive assessment of the Likelihood ratio 

(LR) test, the Wald test, and the coefficients’ significance for 

all nominated models. 

[6] Assess the presence of heteroscedasticity in the error term 

of the chosen model by the Breusch-Pagan test, ensuring the 

model’s statistical integrity. 

2.6. Multicollinearity Diagnostics 
To avoid inaccurate statistical inferences, we diagnosed the 

multicollinearity problem before modeling the linear equations 

as mentioned in step 2 in our empirical framework above. The 

consequences of this issue include inaccurate estimates, inflated 
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and  d 

  

0 

standard errors, misleading p-values, diminished significance 

in partial t-tests, and reduced predictive power of the model, 

Abonazel et al. (2024) and Abdelwahab et al. (2024). 

We employ two primary tools to detect multicollinearity: Pearson’s 

correlation matrix and the Variance Inflation Factor (VIF), Guo 

et al. (2022) and Abonazel and Shalaby (2021). As a rule of 

thumb, VIF values exceeding 5 warrant closer examination, while 

those surpassing 10 indicate severe multicollinearity that requires 

corrective measures. 

3. RESULTS 

3.1. Multicollinearity Tests 
Before we begin estimating spatial regression models, we must 

test for multicollinearity. Table 3 shows the correlation matrix 

between the explanatory variables and the values of the VIF for 

each explanatory variable. 

Table 3 reveals strong correlations (>0.89) between variables 

“X ” as well as “X ” with two others. Initial Variance Inflation 
3 4 

2.7. Construction of Spatial Weights Matrix 
Our study explores the nuances of spatial relationships using two 

Factor (VIF1) results confirm multicollinearity among these 

regressors. Following Paul’s (2006) recommendation to remove 

variables with high VIF values, we removed “X ” and “X ” 
3 4 

distinct approaches of constructing weight matrices to evaluate 

the matrix density impact on empirical inference. 

 

[a] The K-nearest Neighbor Matrix (KNNM): the KNNM 

establishes the spatial relationships between different locations 

based on their proximity. In this setup, each location is 

connected to its (K) nearest neighbors, where K is a pre- 

specified number. This ensures that every location has exactly 

K connections, regardless of the actual distances involved. In 

our analysis, we have chosen (K = 6). For a binary KNNM, 

The spatial weights matrix element w
ij
, is predefined as: 

from the model. Subsequent VIF calculations (VIF2) show no 

multicollinearity, with all values below 10. As a result, we can 

proceed with our analysis using the remaining 6 explanatory 

variables. 

3.2. Spatial Dependence Tests 
Robust Lagrange Multiplier tests (RLM), along with the classical 

ones (CLM), are conducted to examine the spatial structure of NOx 

emissions, following the methodologies of Anselin et al. (1996), 

Anselin (1988), and Burridge (1980). The results presented in 

Table 4, reveal that there is no significant spatial error in the data 

1 if d  d i  j and i, j = 1,, n for either weights matrix. As a result, we can omit the spatial error 

wij = 
0 

ij i(k )  

otherwise 
(4) term from our subsequent analysis. 

Where d
ij 

 
i(k ) 

represents the distance between the locations (i) and (j), 

refers to a critical distance threshold (distance to the Kth 

We then utilize the LR test to evaluate whether the SDM can be 

reduced to the SLM. This test compares two related models, where 

one is a constrained version of the other. In our analysis, the SDM 

nearest neighbor). The KNNM structure offers simplicity in 

interpreting spatial relationships. Nevertheless, its primary 

limitation is that it disregards distance intensity. For example, with 

a 1 km influence distance, a unit 10 meters away would have the 

same weight as one 1 km away. Dubé and Legros (2014) point 

out that this limitation becomes evident when comparing weights 

across various distances. This equal weighting, regardless of actual 

proximity, may not accurately represent the true spatial dynamics 

in some cases. 

 

[b] The Gaussian Transformation Matrix (GTM): this structure 

offers a key advantage through its utilization of the Gaussian 

function outlined in equation (5), which assigns higher weights 

to spatial units that are closer together and lower weights to 

those that are farther apart. 
   2 

2 

if d  d i  j and i, j = 1,, n 

encompasses the SLM. The findings in Table 5 indicate that the LR 

test statistic is significant at a 5% level for the KNNM and a 10% 

level for the GTM. These results suggest that the SDM provides 

a notably superior fit compared to the SLM. Consequently, we 

conclude that reducing the SDM to the SLM is not appropriate in 

any of the scenarios examined. 

3.3. Model Selection 
The estimation results are presented in Table 6. We assessed the 

nominated models using several criteria, including Pseudo R², 

log-likelihood function (LLF), sigma, the Bayesian and the Akaike 

information criteria (BIC and AIC). Our evaluation reveals that 

the SDM utilizing the KNNM performs better than the one using 

the GTM. Specifically, the SDM with KNNM show higher R² and 

LLF values, as well as lower sigma and AIC values. These results 

indicate that incorporating the KNNM in the SDM enhances the 

model’s explanatory power and its capacity to account for spatial 
wij = 

 1− (dij / d )  

ij 
if d  d or i = j (5) variations in NOx emissions. 

 ij 

 
 

3.4. Heterogeneity Diagnoses 

Here, the critical distance d plays a crucial role, with selecting To assess the heteroscedasticity’s presence in the KNNM-based 

the optimal value being a primary challenge to address. In this 

context, d  = Max (min (dij )) is computed as 1199. The distances 

between the centroids of Chinese regions are sourced from “Map 

Developer” see Table 2. To enhance the matrix interpretability, 

row standardization is conducted using the approach detailed by 

Lottmann (2012). 

SDM error term, we employed The Breusch-Pagan test, following 

the methodology outlined in Atikah et al. (2021). 

 

As shown in Table 7, the test produced a P-value greater than the 

standard significance level of 0.05. This result means we cannot 

reject the null hypothesis, which suggests that the error terms are 

homoscedastic. Therefore, we conclude that the KNNM-based 
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Table 2: Descriptiv e statistics of the distances between centroids in Chinese regions (in kilome ters) 

Average Distances Standard Deviation of Distances Minimum Distance Maximum Distance 

1450  761 104 3739 

Links  Number of Nonzero Links % of Nonzero Weights The Average Number of Links 

Spatial structure KNNM 186 19.35 6 

 GTM 396 41.2 12.8 

 
Table 3: Pearson correlation matrix and VIF 

 X
1 

X
2 

X
3 

X
4 

X
5 

X
6 

X
7 

X
8 

X
1 

1        

X
2 

0.3766 1       

X
3 

0.8648 0.5940 1      

X
4 

0.9084 0.4300 0.8968 1     

X
5 

−0.1149 0.0888 −0.0418 0.0291 1    

X
6 

0.4085 0.0095 0.3679 0.3837 −0.1992 1   

X
7 

0.7816 −0.0200 0.5452 0.7882 0.0243 0.3766 1  

X
8 

0.1289 −0.3280 −1.222 0.1073 0.1073 −0.0964 0.4863 1 
VIF1 9.67 2.36 11.86 16.21 1.24 1.41 9.39 2.05 

VIF2 5.23 1.88 --- --- 1.19 1.39 5.48 1.88 

“VIF1” is the VIFs for all regressors in the study, while “VIF2” is the VIFs calculated after excluding “X3 and X4” from the analysis   

 
 

Table 4: Results of classical and robust LM tests across 

various spatial structures 

Test spatial structure  CLM    RLM  

 Lag Error Lag Error 

KNNM 3.0786* 0.4778 3.1202* 0.5194 

GTM 5.4439** 0.3497 6.6513*** 1.5571 

The symbols ***, **, and * indicate significance at the 0.1%, 1%, and 5% levels, 

respectively 

 
Table 5: Results of the LR tests across various spatial 

structures 

Spatial structure Hypothesis LRchi2 (6) P-value 

KNNM SLM nested in SDM 15.1170 0.0194 

GTM SLM nested in SDM 10.8880 0.0919 

 

SDM has a well-specified error structure, enhancing our confidence 

in the model’s parameter estimates’ reliability and efficiency. 

 

4. DISCUSSION 

In the SDM, the traditional interpretation of regression coefficients 

fails to fully capture the model’s complexity due to spatial 

interaction effects. The SDM’s structure, with the dependent 

variable on both sides of the equation, requires a more sophisticated 

interpretation approach. To accurately understand the impacts of 

explanatory variables in an SDM, we must consider two types 

of effects: (1) direct effects which measure how a change in an 

explanatory variable in a specific location affects the dependent 

variable in that same location, and (2) indirect effects which 

capture how a change in an explanatory variable in one location 

influences the dependent variable in other locations, representing 

spatial spillovers. By calculating and interpreting both direct 

and indirect effects for each explanatory variable, we can gain 

a comprehensive understanding of the spatial relationships and 

influences within the model. For a more detailed exploration of 

these concepts and their application, interested readers are directed 

to the seminal works of LeSage and Pace (2009), Kopczewska 

et al. (2017), and Shalaby (2021). These sources provide in- 

depth guidance on properly interpreting and analyzing spatial 

econometric models, including SDM. 

 

From the findings presented in Table 8, we can infer several 

conclusions, including: Electricity consumption has a complex 

relationship with NOx emissions which are characterized by 

distinct direct and indirect effects. Specifically, for everyone 

billion kWh increase in electricity consumption within a given 

region, there is a corresponding increase of about 367.3 tons of 

NOx emissions in that same region. This positive direct effect 

highlights the close relationship between electricity generation 

and NOx pollution. Many power plants, especially those using 

fossil fuels like coal or natural gas, emit NOx as a byproduct of 

the combustion process. As electricity consumption increases in 

a region, local power plants may need to increase production, 

leading to higher NOx emissions in that same region. Additionally, 

Regions with higher electricity consumption often have more 

intensive industrial activities, which can contribute to increased 

NOx emissions through both energy use and industrial processes. 

 

Interestingly, the same one billion kWh increase in electricity 

consumption in one region is associated with a decrease of 

about 713.7 tons of NOx emissions in surrounding regions. This 

negative indirect effect could be explained by several factors: 

(a) Technological spillovers: High-consumption regions may 

invest more in advanced, cleaner technologies that eventually 

spread to neighboring areas, helping them reduce emissions, 

(b) Policy diffusion: Stricter environmental regulations in high- 

consumption areas may influence policy-making in neighboring 

regions, leading to adoption of cleaner practices, and (c) Economic 

specialization: Regions with high electricity consumption might 

focus on energy-intensive industries, allowing neighboring areas 

to specialize in less emission-intensive sectors. 

 

These results are consistent with research conducted by the 

European Environment Agency, which recognized that NOx 

emissions are significantly affected by heat production and 
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Table 6: Results of the estimated SRMs across various spatial structures 

Variable  KNNM    GTM  

 SLM SEM SDM  SLM SEM SDM 

X
1 

0.496 1*** 0.4422*** 0.3201**  0.4333*** 0.4224*** 0.4502*** 

X
2 

−4.7346* −3.6243 0.3224  −4.5688** −4.5769* −4.1508* 
X

5 
−10.5811 −5.6560 5.8032  −10.9692 −2.2659 −13.6412 

X
6 

1.4102 3.1188* −3.5453  0.2731 3.6019** 1.6366 

X
7 

107.6646** 122.2070*** 167.176***  132.8895*** 127.4476*** 129.3348*** 

X
8 

1.7259 −1.0779 −1.9688  −0.4499 3.2737 −4.0192 

W
i
×X

1 
----- ----- −0.8306  ---- ---- 0.5521 

W
i
×X

2 
----- ----- 23.9775***  ---- ---- 17.6418 

W
i
×X

5 
----- ----- 29.6240  ---- ---- −41.2521 

W
i
×X

6 
----- ----- −13.1272**  ---- ---- −6.3775 

W
i
×X

7 
----- ----- 189.4728  ---- ---- −5.2179 

W
i
×X

8 
----- ----- 48.1104***  ---- ---- 50.8773** 

ˆ 0.3379* ----- −0.4735  0.4919*** ---- −0.8905*** 

ρ̂ ----- 0.42027* -----  ---- 0.6023*** ---- 

Wald chi2 Test 610.1141*** 277.3299*** 1030.306***  671.1170*** 220.1989*** 996.9256*** 
Pseudo R2 0.8283 0.8189 0.8945  0.8404 0.8212 0.8877 

LLF 178.3083 179.1330 −170.7496  −177.1387 −178.9009 −171.6949 

Sigma 75.5560 77.2040 58.976  72.3740 75.97 59.6860 

BIC 384.0885 385.7379 389.575  381.7492 385.2737 391.4656 

AIC 372.6166 374.2660 369.4992  370.2773 373.8018 371.3898 

The symbols ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively     

 

 

 

 

 

 

Table 8: Direct and indirect effects of KNNM-based SDM 

Variable Direct Effects Indirect Effects 

X
1 

0.3673*** −0.7137* 

X
2 

−0.8236 17.3146** 
X

5 
4.5104 19.5322 

X
6 

−2.9946 −8.3201 

X
7 

161.870*** 80.1689 

X
8 

−4.3278 35.6417*** 

The symbols ***, **, and * indicate the significance at 1%, 5% , and 10% levels, 

respectively 

 

public electricity. The European Environment Agency also stated 

that nitrogen oxide emissions could decrease by up to 59% if 

advanced technologies were adopted to improve the environmental 

performance of large combustion plants, Lodewijks et al. (2013) 

and Abdelwahab et al. (2024). China has also recognized the 

need to address NOx emissions from electricity generation. In 

November 2011, the country introduced an electricity price subsidy 

(EPS) policy aimed at encouraging coal-fired power plants to 

install denitrification units. This policy represented a significant 

step towards reducing NOx emissions in the power sector. 

 

The research by Lin et al. (2021) provides valuable insights into the 

effectiveness of China’s Environmental Protection System (EPS) 

policy on NOx emissions and removal rates. Their study, which 

analyzed data from 113 prefectural-level cities from 2008 to 2015, 

revealed two key findings: (a) NOx emission reduction: the EPS 

policy resulted in a significant 1.1% decrease in NOx emissions, 

and (b) NOx removal improvement: for each additional power 

plant, there was a 2.8% increase in NOx removal (the amount of 

NOx treated and not released into the atmosphere). These findings 

highlight the effectiveness of targeted policies in addressing 

environmental challenges. The EPS policy demonstrates how 

economic incentives can drive technological adoption and 

environmental improvement in the power sector. The alignment 

between our findings and these broader studies underscores the 

complex relationship between electricity consumption and NOx 

emissions. It suggests that while increased electricity use can 

lead to higher local emissions, it can also drive innovations and 

policy changes that result in overall emission reductions when 

considering wider regional effects. This complexity emphasizes 

the need for nuanced, multi-faceted approaches to environmental 

policy-making, especially in rapidly developing economies like 

China. 

 

PCEXP demonstrates no significant direct impact on NOx 

emissions within the same area. However, it exhibits a substantial 

positive indirect influence on NOx emissions in neighboring 

regions. The absence of a significant direct effect suggests 

that changes in PCEXP within a specific region do not have a 

measurable impact on NOx emissions in that same region. This 

could indicate that: (a) Household consumption patterns may not 

be directly linked to major NOx-emitting activities within the same 

area, (b) Local regulations or technologies might be effectively 

mitigating any potential direct impacts of increased household 

consumption on NOx emissions, and (c) The composition of 

household expenditure might not significantly affect NOx- 

intensive sectors in the local economy. 

 

On the other hand, the presence of a significant positive indirect 

effect implies that an increase in household consumption 

expenditure in one region is associated with an increase in NOx 

emissions in surrounding regions. This could be explained by 

several factors: (a) Economic spillovers and supply chain effects: 

Increased demand for goods and services in one region could 

Table 7: Results of Breusch-Pagan test of SDM based on 

KNNM 

Null hypothesis (H0) Test statistic P-value 

The error terms are homoscedastic 8.4560 0.672 
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lead to increased production in neighboring areas, especially if 

these areas specialize in manufacturing or other NOx-emitting 

industries, and (b) Transportation impacts: Higher consumption 

might lead to increased transportation of goods between regions, 

resulting in higher NOx emissions from vehicles in surrounding 

areas. 

 

Higher levels of PCEXP are associated with lower NOx emissions. 

PCEXP in a given region also has a significant positive effect 

on NOx emissions in neighboring regions. These results are 

consistent with research by Zhang et al. (2019b), which suggests 

that economic development may initially hinder NOx emission 

reduction until a critical threshold is exceeded, after which 

emissions begin to decline. This phenomenon can be explained 

by the tendency of regions with high PCEXP and strong economic 

growth to implement effective measures or adopt technologies that 

effectively reduce NOx emissions. 

 

The positive significant direct effect of X7 indicates that changes 

in land used for urban, rural, industrial, and mining activities 

within a specific region have a measurable and statistically 

significant impact on NOx emissions in that same region. A one 

million hectares increase in land used for urban, rural, industrial, 

and mining activities within a specific region leads to an increase 

of approximately 161.9 thousand tons of NOx emissions in 

the same region. This suggests a strong, immediate connection 

between these land use types and NOx pollution. Where (a) Urban 

areas associated with high population density, increased vehicle 

traffic, and concentrated energy consumption, and may include 

NOx sources like residential heating, commercial activities, and 

urban transportation systems, in this context, Liu et al. (2015) 

demonstrated urbanization has a substantial effect on urban 

meteorology. It can alter the atmospheric diffusion capability 

in urban areas and therefore affect pollutant concentrations. 

(b) Rural activities encompass a diverse range of activities that 

can contribute to NOx emissions through various mechanisms. 

These can be broadly categorized into two main types: agricultural 

activities, which may use NOx-emitting equipment or fertilizers, 

Skiba et al. (2021), and a broader range of rural land uses, such as 

livestock farming, rural industries, and small-scale manufacturing, 

etc., (c) Industrial activities likely be a major contributor, including 

factories, power plants, and other industrial facilities, additionally, 

industrial processes often involve high-temperature combustion, a 

primary source of NOx Zhang et al. (2019b), (d) Mining activities 

involve heavy machinery, explosives, and energy-intensive 

processes, and can contribute significantly to NOx emissions 

through both operations and associated transportation, Oluwoye 

et al. (2017). 

 

An intriguing finding is that area cultivated land has no direct effect 

but has a positive significant indirect effect on NOx emissions, 

which requires careful interpretation. The absence of direct 

effect means that changes in the area of cultivated land within a 

specific region do not significantly impact NOx emissions in that 

same region. This could be due to several factors: (a) Modern 

agricultural practices in the region might be using low-emission 

technologies or methods, (b) The direct emissions from cultivated 

land (e.g., from fertilizer use or agricultural machinery) might be 

relatively small compared to other sources of NOx in the same 

region, (c) There could be effective local policies or practices 

in place that mitigate direct NOx emissions from agricultural 

activities. 

 

On the other hand, a significant positive indirect effect indicates 

that an increase of 1 million ha in the area of cultivated land 

in one region is associated with an increase of 35.6 thousand 

tons in NOx emissions in neighboring regions. This spatial 

spillover effect could be explained by several mechanisms: 

(a) Agricultural supply chain: Increased cultivation in one area 

might lead to increased processing, transportation, and related 

industrial activities in neighboring regions, which could contribute 

to higher NOx emissions, (b) Economic spillovers: Greater 

agricultural production might stimulate overall economic activity 

in surrounding areas, potentially leading to increased industrial 

output or energy consumption, and consequently higher NOx 

emissions, (c) Land used changes: Expansion of cultivated land 

in one area might lead to the displacement of other activities 

(e.g., industry, urbanization) to neighboring regions, indirectly 

increasing their NOx emissions, (d) Regional specialization: 

As one area focuses more on agriculture, neighboring regions 

might specialize in complementary industries that are more NOx- 

intensive. 

 

5. LIMITATIONS 

The research on NOx emissions in China, while informative, faces 

several limitations that warrant discussion, including (1) Temporal 

scope: The study is constrained to data in 2022, offering only a 

snapshot of the situation rather than a comprehensive temporal 

analysis. This limitation is due to gaps in time series data across 

all regions, preventing the examination of long-term trends 

or year-to-year variations in NOx emissions and their driving 

factors. Consequently, the research may not capture important 

historical patterns, cyclical fluctuations, or the evolution of 

relationships between socioeconomic factors and emissions 

over time. Spatial panel data analysis could provide more 

comprehensive insights into the evolution of NOx emissions in 

China. (2) Spatial resolution: The study likely uses provincial 

or city-level data, which may mask intra-regional variations in 

emissions and socioeconomic factors. Finer spatial resolution (e.g., 

county or district level) could reveal more nuanced patterns and 

relationships. (3) Limited variables: The study focuses on specific 

socioeconomic factors, potentially overlooking other important 

variables such as industrial composition, transportation patterns, or 

policy interventions. Including a broader range of variables could 

provide a more comprehensive understanding of NOx emission 

drivers. (4) Lack of sector-specific emissions data: The study is 

limited by the unavailability of detailed NOx emissions data from 

main economic sectors in 2022. This data gap impairs the ability 

to pinpoint the most significant polluting industries and hampers 

the development of targeted, sector-specific recommendations 

for emissions reduction. The absence of this granular information 

may result in overly generalized mitigation strategies, potentially 

diminishing their effectiveness in addressing the primary sources 

of NOx emissions. 
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6. CONCLUSIONS 

Environmental pollution, particularly NOx emissions, presents a 

significant challenge intrinsically linked to economic development. 

China, as a rapidly growing economy, faces the complex task 

of balancing progress with environmental sustainability. This 

situation necessitates in-depth research into the socio-economic 

drivers of NOx emissions in the country. Our study employs SRMs 

to analyze a comprehensive geographical dataset covering 31 

Chinese regions in 2022. This approach emphasizes the critical role 

of spatial dependencies in understanding and accurately modeling 

NOx emissions. Our research yields several key insights: 

 

Our analysis reveals that NOx emissions in China exhibit complex 

spatial patterns, demonstrating both spatially lagged-dependent 

and lagged-independent correlations. This finding underscores the 

interconnected nature of environmental pollution across regions 

and highlights the importance of considering spatial relationships 

in environmental modeling. 

 

Among the SRMs evaluated, the KNNM-based SDM emerged as 

the most suitable for capturing these spatial effects. This conclusion 

is supported by rigorous statistical testing, including LM and LR 

tests, as well as comprehensive goodness-of-fit criteria. 

 

Electricity consumption demonstrates a nuanced impact, with 

increased consumption leading to higher local NOx emissions 

but potentially reducing emissions in neighboring regions. This 

suggests that while local energy use contributes to pollution, it 

may also drive technological and policy innovations that benefit 

wider areas. These findings suggest that policies aimed at reducing 

NOx emissions should: (a) Focus on improving energy efficiency 

and cleaner production in high-consumption regions to mitigate 

direct effects. (b) Facilitate technology transfer and policy 

learning between regions to maximize beneficial spillover effects. 

(c) Consider the interconnected nature of regional economies and 

energy systems when designing interventions. 

 

PCEXP shows no significant direct effect on local NOx emissions 

but has a positive indirect effect on emissions in surrounding 

regions. This indicates that consumer behavior in one area 

can have far-reaching environmental consequences beyond its 

immediate vicinity. To alleviate this impact, policymakers in China 

should focus on (a) encouraging interregional collaboration to 

develop coordinated strategies that account for the indirect effect 

of household consumption on NOx emissions by establishing 

platforms for sharing best practices and implementing joint 

initiatives that promote sustainable consumption patterns, and 

(b) emphasizing sustainable practices across supply chains to 

mitigate the environmental footprint of increased production 

driven by consumer demand, and encouraging transparency 

and accountability in production processes to reduce emissions 

associated with manufacturing and transportation. 

 

Land used for urban, rural, industrial, and mining activities has 

a significant direct effect on NOx emissions, underscoring the 

importance of spatial planning in pollution control. Interestingly, 

the cultivated land area shows no direct effect but a positive 

indirect effect on NOx emissions in neighboring regions. This 

suggests that agricultural practices may have more complex, 

spatially distributed impacts on air quality than previously thought. 

Given these results, it is imperative to formulate a comprehensive 

land use planning framework. This strategy should entail targeted 

emission reduction measures tailored to the specific characteristics 

of each land use type. Emphasize eco-friendly practices in 

urban areas to address high-density populations and vehicular 

emissions, promote sustainable agricultural techniques in rural 

regions to reduce fertilizer-related NOx sources, and implement 

sustainable practices in mining activities to mitigate NOx-intensive 

operations. Furthermore, considering the significant indirect effect 

of cultivated land on NOx emissions, focus on collaborative 

regional approaches to address spatial spillover effects. Implement 

cross-boundary policies that regulate agricultural supply chains, 

promote sustainable economic growth, manage land use changes 

effectively, and encourage regional specialization to minimize 

indirect NOx emissions from increased cultivated land areas. 

 

Interestingly, the urban population density and % green-covered 

area don’t show significant impacts on NOx emissions in Chinese 

regions. 

 

In conclusion, this research underscores the need for comprehensive, 

spatially-aware approaches to environmental management. 

Policymakers should consider both local and regional impacts 

when designing strategies to reduce NOx emissions. Future 

research should further explore the mechanisms behind these 

spatial relationships to inform more effective environmental 

policies in rapidly developing economies like China. 
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APPENDIX 

 

Figure A1: Interaction effects between two locations 
 

 
Table A1: All possible spatial interaction combinations in 

the SRMs 

Model Name Spatial Interactions 

  Term Count 

SLM Spatial Lag Model W
n
y

n 
1 

SEM Spatial Error Model W
n
ε

n 
1 

SLX Spatial Lag of X Model W
n
X

n 
K 

SAC Spatial Autoregressive 
Combined Model 

W
n 

y
n 

and W
n 

ε
n 

2 

SDM Spatial Durbin Model W
n
y

n 
and W

n 
X

n 
K+1 

SDEM Spatial Durbin Error Model W
n
X

n 
and W

n
ε

n 
K+1 

GNS General Nesting Spatial Model W
n 

y
n 

and W
n 

X
n 

and W
n 

ε
n 

K+2 

 


	Ehab Ebrahim Mohamed Ebrahim1,2, Mohamed R. Abonazel3*, Ohood A. Shalaby4, Walaa Abdullah Abdullah Albeltagy5
	1. INTRODUCTION
	2. METHODS
	2.1. Data Description
	2.2. Spatial Visualization of NOx Emissions across Chinese Regions
	2.3. Spatial Regression Models
	2.4. Spatial Regression Models Assumptions
	2.5. Our Empirical Framework
	2.6. Multicollinearity Diagnostics

	3.  RESULTS
	3.1. Multicollinearity Tests
	2.7. Construction of Spatial Weights Matrix
	3.2. Spatial Dependence Tests
	3.3. Model Selection
	3.4. Heterogeneity Diagnoses

	4. DISCUSSION
	5. LIMITATIONS
	6. CONCLUSIONS
	REFERENCES
	APPENDIX

