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ABSTRACT

The European Union Emission Trading Scheme has established a pricing system for carbon emissions. As the new commodity may increase the 
diversification of a financial portfolio and reduce the overall investment risk, a deeper investigation of its properties is needed. Investigating the 
link between carbon and other asset classes, such oil and stock markets, is important to understand how carbon market interacts with other financial 
markets. Empirical results indicate that carbon futures returns do respond positively to oil returns shock. A shock in oil price initially has a positive 
impact on stock market. The multivariate generalized autoregressive conditional heteroskedasticity of the Baba, Engle, Kraft, Kroner model indicate 
that oil market has an effect on the volatility of the other two markets but it is much less affect by them. These results should be useful for policy 
makers, portfolio managers and others interested in this rapidly developing field of finance.
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1. INTRODUCTION

The United Nations Framework Convention on Climate Change 
was established in 1992 and sought to launch a global climate 
change regime, the foundation of what is known today as the 
Kyoto protocol, founded in 2005, signed by several developed 
and emerging countries. The Kyoto Protocol commits industrial 
countries to reducing domestic greenhouse gas emissions by 
about 5% compared to the year of 1990 before 2008-2012, and 
also defines three international cooperation mechanisms to help 
Member States to achieve compliance with their commitments. 
One of the main mechanisms of greenhouse gases reduction was 
the trading of carbon dioxide (CO2) emission allowances.

The Emission Trading Scheme (ETS) was chosen from the most 
energy-intensive ones and all other sectors, including households 
and their fossil energy consumption. The main participants in 
the emission allowance markets are polluting industries which 
have the right to emit a certain volume of CO2 annually, allotted 
to them in the form of a new tradable asset that has been created 
- the European Union Allowances (EUAs). They sell surplus 

EUAs in the market through reductions in their production or 
through technological change. It is accepted that the increasing 
concentration of greenhouse gases in the atmosphere is linked 
to human activities. If the emission is left unchecked without 
additional measures, the alarming phenomena of global warming 
and climate change cannot be stopped. In an attempt to control 
CO2 emissions, the carbon market has been developing rapidly.

Since the start of the European Union Emission Trading Scheme 
(EU ETS), there has been an increasing interest in studying the 
carbon markets in a financial point. For example, Uhrig-Homburg 
and Wagner (2007) investigates the relationship between spot and 
futures prices in the EU ETS, suggesting that after December 
2005 spot and futures prices have been linked by the cost-of-
carry approach. Additionally, several literatures, such as Alberola 
et al. (2008), have focused on the determinants of CO2 prices. 
They argue that lagged energy prices (oil and natural gas) as well 
as weather variables may explain CO2 prices for the EU ETS. 
However, they do not take into account the possibility of volatility 
spillovers and fewer researches have focused on the volatility 
transmission between CO2 and oil markets. Accordingly, the aim 
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of this paper is to fill this gap, arguing that if oil returns have an 
impact on CO2 returns, it could also be the case of oil returns 
volatility could have an impact on CO2 returns volatility.

In addition, nowadays, a rich body of literatures on oil market 
interaction can be found in two major aspects. One is to conduct 
empirical studies on interactions among diverse oil markets, and the 
other is concerned about the relationship between financial markets 
(especially the stock markets) and oil markets. In addition, oil also 
acts as a driver of the US economy and sets the standard of living for 
the people in the US. Indeed, various data and statistical approaches 
have been adopted by prior studies as a means of verifying the 
evidence that oil shocks have a statistically significant impact on 
stock returns in the US (Sadorsky, 1999; Cologni and Manera, 2008).

Some literatures discuss volatility spillover between oil and stock 
markets. For example, Agren (2006) investigated volatility spillover 
from oil prices to stock markets by using generalized autoregressive 
conditional heteroskedasticity (GARCH)-family models. Extending 
their work, we analyze the relationship among carbon, oil and stock 
markets and how volatility interacts across these three markets. This 
study will further explore how information events and volatility 
interact across market. It is important to analyze the volatility 
transmission patterns across these markets to facilitate optimal 
portfolio allocation and risk management decisions. In fact, volatility 
becomes a key variable when interpreted as a proxy for information 
flow and when used for valuation of options and other derivatives. 
The trading of carbon emissions has resulted in a new class of 
financial instruments, which are expected to grow in importance as 
global warming and climate change is gathering attention.

As new commodity may increase the diversification of a financial 
portfolio and reduce the overall investment risk, a deeper 
investigation of its properties is needed. Therefore, we are 
wondering how the carbon market interacts with other financial 
markets, such as the oil and stock market. Specifically, our 
particular interest is to examine whether conditional volatility is 
transmitted across these markets. We not only consider the variance 
of each series but also allow for the possibility that changes in 
volatility in one of the markets may spillover to the others.

There may be a relationship linking carbon market, oil market, 
and stock market (Figure 1). Oil prices were within a range up 
to end-2006 after which they show an upward trend. Strong oil 
demand and OPEC’s production cuts have led to a sharp tightening 
of the global supply and demand balance. Then in 2008, the price 
of crude oil skyrocketed from $ 92 a barrel in January to more than 
$140 per barrel in June amid a slew of geopolitical developments. 
As a result, New York Mercantile Exchange (NYMEX) oil prices 
jumped $10 in 2 days, hitting a record $147.27 per barrel in July on 
concerns in the Middle East and supply disruptions from Nigeria. 
Crude oil price slumped to less than $ 40 per barrel in December 
as worldwide demand began to collapse on account of global 
recession. Between January 2007 and January 2011, oil prices 
went through a “boom and bust cycle.”

According to Figure 1, the “boom and bust cycle” of oil prices go 
hand in hand with the ups and downs of stock prices, suggesting that 

the stock market is sensitive to the oil prices change. Meanwhile, EU 
ETS started with a crash in EUA prices, continuing the decline that 
had begun in the second half of 2008 as the financial crisis became 
widespread. The carbon market endured its most challenging year 
to date in 2009. The global economic crisis, which started in late 
2008 and intensified early in 2009, negatively deteriorated both 
the demand and supply sides of the market, as industrial output 
plummeted and the demand for carbon assets fell. Oil and carbon 
prices tend to change similarly, such as “wander up and down.” 
All of these points will be confirmed in the following chapters.

In this paper, we investigate the time-varying return relationship 
and the persistence of shocks to volatility within GARCH 
framework across these markets. The remainder of this paper is 
organized as follows. Section 2 provides a review of the related 
literature. Section 3 describes the empirical methodology adopted 
for this study. In Section 4, we present the data and the empirical 
results. Finally, in Section 5 we summarize our conclusions.

2. LITERATURE REVIEW

Hitherto, a rich body of literatures on oil market can be found in two 
aspects. One is to conduct empirical studies on interactions with the 
economy and the other is concerned about the relationship between 
financial markets (especially the stock markets) and oil markets. 
Prior literature finds a positive association between the rising oil 
price and inflation (e.g., Fama, 1981; Cunado and Perez, 2005), 
which affects the discount rate used in the equity pricing formula for 
valuing stock prices. Many studies find a negative and statistically 
significant relationship between the oil price movements and stock 
prices (e.g., Jones and Kaul, 1996, Park and Ratti, 2008).

Apergis and Miller (2009) examined whether structural oil-market 
shocks affect stock prices in eight developed countries. The 
aggregate supply and demand shocks in oil do not significantly 
explain stock returns in Australia, whereas the idiosyncratic 
demand shocks affect stock returns in Canada at a weaker level 
of significance. They find that international stock market returns 
do not respond very significantly to oil price shocks.

Nandha and Faff (2008) examined how oil prices changes influence 
the equity price and then explore if there is any asymmetric 
impact of oil price on equity returns. They use monthly data in 35 
industrial sectors, from the globally diversified industry portfolios 
and find that in 33 industry sectors oil prices have a significantly 
negative impact. Oil and mining are the two remaining industries 
in which oil prices have a positive impact. Their findings argue 
that oil prices have a negative impact on real output and hence an 
adverse effect on corporate profits as oil is used as an input. When 
testing price effect asymmetry, they find that oil price change 
effect on equity price is symmetric, not asymmetric as expected.

Henriques and Sadorsky (2008) studied the relationship between 
clean-energy stock prices and oil price using VAR approach over 
the period January 3, 2001 to May 30, 2007. They suggest that 
shocks to oil prices have little significant impact on the stock prices 
of alternative energy companies.
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Park and Ratti (2008) estimated the effects of oil price shocks and oil 
price volatility on the real stock returns of the USA and 13 European 
countries, finding that oil price shocks have a statistically significant 
impact on real stock returns in the same month, and real oil price 
shocks also have an impact on real stock returns across all countries. 
In addition, they provide evidence of asymmetric effects on real 
stock returns for the U.S. and Norway, but little evidence of 
asymmetric effects for the oil importing European countries.

Malik and Hammoudeh (2007) examined the volatility and shock 
transmission mechanism among US equity, Gulf equity and global 
crude oil markets within a multivariate GARCH (MGARCH) 
framework. They are able to document that Gulf equity markets are 
the recipients of volatility from the oil market. Additionally, only 
in the case of Saudi Arabia was there any evidence of a significant 
volatility spillover from the equity market to the oil market.

Lee and Ni (2002) analyzed the effects of oil price shocks on 
demand and supply in various industries using VAR models. Their 
results indicate that for industries with oil accounting for a large 
share of input costs, such as petroleum refinery and industrial 
chemicals, oil price shocks mainly reduce supply. In contrast, 
for many other industries, such as the automobile industry, oil 
price shocks mainly reduce demand. Their study suggests that oil 
price shocks influence economic activities beyond those that are 
explained by direct input cost effects.

Sadorsky (1999) used GARCH model and VAR to investigate the 
relationship among oil prices, interest rate, industrial production, 

consumer price index and stock markets in the US. The sample 
data starts in January 1950 and ends in April 1996. He concludes 
that negative oil shocks have a greater impact than positive oil 
shocks on the stock markets and economic activity. He also 
discovers that increasing volatility of oil prices has a negative 
effect into stock markets.

Since the start of the EU ETS, the interest in studying the carbon 
markets from a financial point of view has increased. Mansanet-
Bataller et al. (2007) identify the main carbon price drivers 
as energy market prices (oil, gas, coal) and extreme weather 
events. According to Alberola et al. (2008), carbon price drivers 
vary depending on institutional events, especially during the 
revelation of information relative to emissions caps. Both studies 
also highlight the importance of power operator fuel-switching 
behavior in influencing carbon price changes.

Keppler and Mansanet-Bataller (2010) analyzed the causalities 
among several energy-related variables, CO2 and weather both 
for Phase I of the EU ETS and the first year of the Phase II of 
the EU ETS. The results show that during Phase I, coal and gas 
prices, through the clean dark and spark spread, impact CO2 futures 
prices, which in return Granger causes electricity prices. During 
the first year of the Phase II, the electricity prices Granger cause 
CO2 prices. The main results including the two periods exhibit 
several structural similarities, such as the Granger causality from 
CO2 futures to CO2 spot prices. This result is not unexpected given 
that the futures market is several times larger than the spot market.

Figure 1: (a) A plot of the EUA futures prices (EUA), (b) the West Texas Intermediate crude oil futures prices (OIL), (c) the Dow-Jones index 
futures prices (NYD)

a

c

b
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Mansanet-Bataller and Soriano (2009) have investigated the 
transmission of volatility among the carbon, oil and natural 
gas prices, using daily returns data with a sample period from 
April 2005 to December 2008. In general, we find evidence of 
bidirectional volatility transmission between the CO2 and oil 
markets. The natural gas market has an effect on the volatility of 
the other two markets but it is much less affected by them.

Tian et al. (2016) investigated the impact of the EU-ETS on the 
electricity generation sector. By utilising a simple OLS and panel 
data analysis, it was determined that the EUA market impact on 
the performance of important electricity producers in the EU 
varies, depending upon the carbon intensity of the producers and 
EU market volatility. The stock market tends to positively respond 
to EUA price changes for those producers that use predominately 
green energy in their generation. When the carbon price is rising, 
those producers are subject to less risk (and costs) and experience 
enhanced cash flows from freely allocated emissions. However, 
when EUA prices fall, these companies are penalised for their 
relatively lower-cost efficiency.

3. METHODOLOGY

In this section, we measured the interaction among carbon futures 
returns, oil futures returns and stock futures returns. Here, we 
employ the augmented Dickey-Fuller (ADF) test for variable 
stationary, and the volatility spillover transmission effect is 
examined by the MGARCH- Baba, Engle, Kraft, Kroner (BEKK) 
(1,1) models.

3.1. MGARCH (1,1)-BEKK Model
In order to estimate the mean and volatility spillover effects of 
price returns across market and capturing the volatile time-varying 
characteristics, a MGARCH model is necessary. We use the BEKK 
model representation of the MGARCH model, proposed by Engle 
and Kroner (1995).

A common specification of the VECH model (Bollerslev et al., 1988) 
assures a positive finite variance-covariance matrix while certain 
restrictions must be accomplished. As the number of variables 
employed in the model increases, the estimation of the VECH model 
can quickly become infeasible. Hence the diagonal (Bollerslev et 
al., 1988) reduces the number of parameters to be estimated, but it 
also removes the potential interactions in the variances of different 
markets. However, neither the VECH nor the Diagonal ensure a 
positive definite variance-covariance matrix. The BEKK model is 
the specification best fitting our objectives, with the main advantage 
being that it significantly reduces the number of parameters to be 
estimated without imposing strong constraints on the shape of 
the interaction between markets. Moreover, it guarantees that the 
covariance matrix will be positively definite. The following mean 
equation is estimated for each return series:

R =c+ R +
t t-1 t

Γ ε  (1)

t t-1 tI :N(O),Hε  (2)

Where Rt is an n×1 vector of EUAR, OILR and NYDR at time 
t and Γ is a n×n matrix of parameters associated with the lagged 
returns. The n×1 vector of random errors, εt, is the innovation 
for each market at time t and has a n×n conditional variance–
covariance matrix, Ht. The market information available at time 
t−1 is represented by the information set It−1. The n×1 vector, 
c, represents constants.

This BEKK model (Engle and Kroner, 1995) is designed in such 
a way that the estimated covariance matrix is positively semi-
definite, which is needed to guarantee non-negative estimated 
variances. The variance equation in the BEKK representation for 
MGARCH model can be written as:

H W W A A B H B
t t-1 t-1 t 1
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Where the individual elements for the W, A, and B matrices for 
equation (3) are given as
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Ht is the conditional variance matrix, W is a 3×3 lower triangular 
matrix with 6 parameters, and A is a 3×3 square matrix of 
parameters showing the extent to which conditional variances 
are correlated with past squared errors (i.e., deviations from 
the mean). Hence, the elements of A capture the effects of the 
shocks or unanticipated events on the conditional variances 
(volatility). B is also a 3×3 square matrix of parameters, showing 
how the current levels of conditional variances are affected by 
the past conditional variances. The total number of estimated 
elements for the variance equations in this study is 24. We set 
the conditional variance for the equation and for the MGARCH 
(1,1) as
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Model estimation for all classes of MGARCH model is again 
performed using maximum likelihood as follows:

L
T

2
ln 2

1

2
ln H H

t t t

1

t

t 1

T

θ π ε′ ε( ) = − ( ) − +( )−

=
∑

 (6)

Where θ is the estimated parameter vector and T is the number of 
observations. Numerical maximization techniques are utilized to 
maximize this non-linear log likelihood function. Initial conditions 
are obtained by performing several initial iterations using the 
simplex algorithm, as recommended by Engle and Kroner (1995). 
The BFGS algorithm is then used to obtain the final estimate of the 
variance-covariance matrix with corresponding standard errors.

4. DATA AND EMPIRICAL RESULTS

4.1. Data Summary
The sample period for all variables covers the period April 22, 
2005 to January 31, 2013. We use carbon allowance price 
futures contracts from the European Climate Exchange. Europe 
has emerged as a leader in the emissions trading industry with 
the EU ETS being the world’s largest market for CO2 emission 
allowances. As shown in Mansanet-Bataller et al. (2007), 
during the pilot phase, all prices for the same phase are highly 
correlated, even though they are traded in independent market. 
The carbon price is not for global market. However, it affects 
prices of ET and therefore we expect the carbon price to be a 
proxy for global price.

With regards to oil prices, we considered the West Texas 
intermediate (WTI) crude oil futures contract the most 
representative price. The WTI futures contract is the most 
widely traded oil futures contract in the world and used as a 
benchmark in oil pricing. The WTI has a long history of being 
used as a benchmark for oil prices. Moreover, the NYMEX oil 
futures contract is the most heavily traded futures contract of a 
physical commodity in the world, representing an efficient flow 
of information between buyers and sellers. The oil future sprices 
are available from Energy Information Administration.

Finally, the stock prices for Dow Jones are from the NYMEX. We 
considered the stock price futures for Dow Jones as a proxy of the 
expectations of general future economic activity. In an efficient 
market, stock prices are equal to the expected discounted flow of 
future dividends, depending on future profits and revenues which 
both rely heavily on general economic activity.

The data set was subsequently transformed into daily returns, 
with the returns are calculated in their logarithmic form as 
Rt = ln(Pt/Pt-1), where Pt is the closing price at time t. The following 
notation will be employed:

EUAR is the first log difference of the EUA futures prices, OILR 
is the first log difference of the WTI crude oil futures prices and 
NYDR-first log difference of the Dow-Jones index futures prices.

4.2. Descriptive Statistics
Table 1 presents a preliminary statistics for each variable series. 
The average daily returns are positive, except the EUAR. Standard 
deviations are centered on 2.6%, except for the EUAR, which has 
varied 1.3%. The NYDR and OILR have return distributions that 
are positively skewed, while the EUAR is negatively skewed. The 
fact that Kurtosis is generally either much higher or lower indicates 
leptokurtic or platykurtic. In this study evidence of the coefficient 
of kurtosis for EUAR, OILR and NYDR are 15.16331, 8.039271 
and 17.97175 respectively. The value of kurtosis indicates that 
each of the return series is leptokurtosis (i.e., they possess fat tails). 
All series show positive and higher value of Jarque-Bera, which 
present that the returns are non-normally distributed.

Moreover, the significant value of the Ljung-Box statistics for 
the returns series rejects the null hypothesis of white noise, 
indicating the presence of autocorrelation. The significant value 
of Ljung-Box statistics for the squared returns shows the presence 
of autocorrelation in the square of variable returns. The final 
statistic test for ARCH-LM indicates that each of the variable 
series exhibits the ARCH phenomena. In each case, most of these 
test statistics are at the 1% level, suggesting that property of return 
series implies that using GARCH family of models to analysis 
volatility transmission patterns.

Figure 2 presents the returns of the EUA futures (EUAR), the 
WTI crude oil futures (OILR), and the Dow-Jones index futures 
(NYDR). The values of these series change rapidly from period 
to period in an apparently unpredictable manner, suggesting 
the series are volatile. Furthermore, there are periods the series 
display time-varying volatility as well as “clustering” of changes. 
In other word, the current level of volatility tends to be positively 
correlated with its level during the immediately preceding period. 
This phenomenon is demonstrated in Figure 2. The important 
point to note from NYDR and OILR is that volatility occurs in 
bursts. There appears to have been a prolonged period of relative 
tranquility in the market during 2005 to 2007, evidenced by only 
relatively small positive and negative returns. On the other hand, 
from early 1998 to the end of 2008, there was far more volatility, 

Table 1: Descriptive statistic
Statistic EUAR OILR NYDR
Mean −0.000089 0.000323 0.000094
Median 0.000664 0.000464 0.000631
Maximum 0.193191 0.171605 0.127480
Minimum −0.281081 −0.130654 −0.096122
Standard deviation 0.027041 0.026404 0.013854
Skewness −0.922376 0.271203 0.408412
Kurtosis 15.16331 8.039271 17.97175
Jarque-Bera 8874.599*** 1439.979*** 12632.28***
L-BQ (16) 39.318*** 40.815*** 71.885***
L-BQ2 (16) 290.35*** 1545.5*** 1830.6***
ARCH-LM 13.72903*** 37.36160*** 53.73746***
Observation 1455 1455 1455
***Statistically significant at the 1% level. The Jarque-Bera test is a measure of 
normality, based on the sample Skewness and kurtosis. L-BQ (k) and L–BQ2 (k) are 
Ljung-Box statistics for the level and squared terms for autocorrelations up to k lags. 
The ARCH-LM statistics indicating the existence or not of ARCH phenomena
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when many large positive and large negative returns were observed 
during a short period of time. In short, the three return series 
represent volatility clustering.

4.3. Unit Root Tests
We test unit roots for each series and the null hypothesis of non-
stationary (unit-root) series versus the alternative hypothesis of 
stationary series using the ADF statistic (Dickey and Fuller, 1979, 
1981). We employ the Akaike Information Criteria to select the lag 
length from the ADF test. Table 2 reports the results for the level 
series with and without a trend. They can reject the null hypothesis 
at the 1% significant level, suggesting all series in our study are 
I(0) processes and these variables are not first differenced.

4.4. THE ESTIMATE RESULTS OF MGARCH 
(1,1)-BEKK MODEL

The earliest empirical study done by Bollerslev (1986) suggests that 
the results of the GARCH (1,1) model provide a good fitting for 
time series models. Before estimating the parameters of GARCH 
(1,1), we first test this model for the generation of residual items 
(i.e., whether they exist in the ARCH phenomenon). If they exist, 
then the parameters are further adopted into the GARCH model and 
processed for empirical analysis. Table 1 shows that the residual 
item of the variables exists in the ARCH effects. We now examine 
the mean equation (1) and variance equation (2). They reveal how 
shocks and volatility are transmitted over time and across markets.

Table 3 exhibits estimated coefficients for conditional mean returns 
of concerned markets. The evidence is regarding its own and 
cross mean spillover effects. However, the EUAR has a positive 
mean return spillover effect from OILR and NYDR at the level 
of significance of 5%. Turning now to an analysis of possible 
interdependencies in the form of volatility spillover effects, we 
present in Table 3 the estimated coefficients of the time-varying 
variance-covariance in the system.

The coefficients denoted as ‘W’ are the constant terms in each 
equation; those denoted as ‘A’ are ARCH parameters measuring 
the effects of the lagged own and cross innovation; while the ‘B’ 
coefficients are the GARCH effect which the lagged own and cross 
volatility persistence on the current own and cross volatility of the 
three markets. The diagonal line (αii) indicates the extent of the 
correlation of the conditional variance of the EUAR, OILR and 
NYDR with the past squared residuals of ε

i, t-1

2
 for i 1,2,3= [ ] . The 

off-diagonal elements (αij) simultaneously impact the conditional 
variance of one of the variances originating from past squared 
residuals of other elements. The elements in matrix, βii, measure 
the effect of own conditional variance while the off-diagonal 
elements, βij capture the relation in terms of conditional variance 
across markets, also known as returns spillover. In short, the off-
diagonal elements of matrices A and B capture the cross-market 
effects such as shock and volatility spillovers among the market.
Our findings indicate that CO2 volatility (conditional variance) is 
affected by the past volatility of its own, the oil and stock return, 
which means that the CO2 volatility is not only directly affected 

Figure 2: (a) A plot of the EUA futures returns (EUAR), (b) the West Texas Intermediate crude oil futures returns (OILR), (c) the Dow-Jones index 
futures returns (NYDR)

a

c

b
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by its own past volatility (β11) but also indirectly by past volatility 
of the oil (β12) and stock (β13) return. Thus we find significant 
volatility transmissions from oil and stock market to the CO2 
market at the 1% and 10% level of significance. Our results also 
indicate that the CO2 volatility is affected by shocks originated 
in the carbon market and stock market, the results suggest the 
EUAR is affected by lagged squared residuals of EUAR (α11), 
OILR (α12) and NYDR (α13). The oil returns volatility behavior 
differs substantially from the CO2. The oil volatility is directly 
affected by its own volatility (β22) as well as its own lagged squared 
residuals (α22).

Finally, the behavior of stock returns volatility is not similar to 
the carbon volatility in the past volatility impacts on the present 
volatility. In this case, the statistically significant coefficients at 
1% significance level are directly affected by its own volatility 
(β33) and indirectly by the volatility of the OILR (β32). There are 
statistically significant own and cross lagged innovation effects as 
well as the lagged squared residuals in the NYDR (α33) and OILR 
(α32). Thus, we may say that stock returns volatility is affected by 
past volatility in the oil market and its own past shocks.

5. CONCLUSION

Carbon emission is a brand-new traded financial instrument. 
Investigation of the linkages between carbon and other markets, 
like crude oil and stock, is important to understand how carbon 
market interacts with other financial markets. This paper discusses 
the dynamic interaction between the EUA futures returns (EUAR) 
and other markets, such as the WTI crude oil futures returns 
(OILR) and the Dow-Jones index futures returns (NYDR) over the 

period from April 22, 2005 to January 31, 2011. We consider not 
only the variance of each series but also allow for the possibility 
that changes in volatility in one of the markets may spillover to 
the others.

The results show that CO2 is directly affected by its own volatility, 
and indirectly (through the covariance) affected by the oil and 
stock return volatility. Whereas volatility in the oil market is much 
independent from the others, the oil market has an effect on the 
volatility of the other two markets but is much less affected by them.

There are several possible explanations for the differences 
concerning the market reactions. On the one hand, a shock in oil 
return has a negative and statistically significant initial impact on 
stock returns. As suggested by Sadorsky (1999), oil price changes 
affect economic activity, raise the production costs of goods and 
services, dampen cash flow, and depress stock prices.

On the other hand, if assumed that higher oil prices would decrease 
demand, which would reduce consumption, which in turn, would 
reduce emissions. With emissions falling, the price of carbon 
would follow the suit. But the carbon market simply doesn’t work 
that way. When oil price is on the rise, a few applications can use 
either oil or gas, and this interplay links oil and gas prices together. 
At least over the short term, oil and gas prices are connected. The 
surge in oil prices leads to a simultaneous increase in natural gas 
prices. Higher natural gas prices shift the electricity mix away 
from low-carbon natural gas and towards higher-carbon coal. Thus, 
coal consumption in the capped sectors is indirectly lifted by the 
rise in oil prices. Higher oil price is associated with a booming 
economy and more emissions.

Table 2: Unit root tests
Variables Augmented Dickey - Fuller

Without trend level With trend level
EUAR −12.01990 (10)*** −12.02433 (10)***
OILR −8.401957 (17)*** −8.405429 (17)***
NYDR −13.74546 (8)*** −13.74127 (8)***
***Statistically significant at the 1% level. Figures in parentheses denote the optimal lag length through the AIC, whose critical values equal the following values: 1% = −3.96, 5% = 
−3.41, 10% = −3.13

Table 3: The estimated coefficients of the returns of the carbon futures, oil futures and stock futures
Coefficient EUAR-OILR-NYDR
Mean equation

b11 0.00067*** (0.00022) b12 0.00067** (0.00027) b13 0.00095* (0.00055)
Variance equation

α11 0.44392*** (0.03776) α12 0.01881** (0.00760) α13 0.01548* (0.00935)
α21 0.00137 (0.00659) α22 0.19793*** (0.00000) α23 −0.08503 (0.05925)
α31 0.11654 (0.06606) α32 −0.08886*** (0.03162) α33 0.27132*** (0.01192)
β11 0.86951*** (0.01976) β12 0.00909*** (0.00352) β13 0.008727* (0.00527)
β21 0.00151 (0.00189) β22 0.97496*** (0.00421) β23 −0.03590 (0.23088)
β31 −0.03365 (0.02298) β32 −0.02979*** (0.00922) β33 0.95721*** (0.00300)

Log-likelihood 11619.13235
Diagnostic checking

L-BQ (24) 62.714
L-BQ2 (24) 286.937
ARCH-LM (12) 9.748385

***, **, *denotes rejection of the hypothesis at the 1%, 5%, and the 10% level, respectively. The market described by 1 is the EUA futures returns (EUAR), 2 is the West Texas 
Intermediate crude oil futures returns (OILR), 3 is the Dow-Jones index futures returns (NYDR)
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We document that carbon future returns may be weakly forecasted 
on the basis of two variables from the oil and stock markets. 
Overall, carbon allowance is a considerably specific market 
among energy commodities. These results help us to understand 
the patterns of carbon price returns. They are also useful to 
policy makers, portfolio managers and others who are interested 
in this rapidly developing field of finance, among them hedging 
opportunities, portfolio diversification, and green portfolios.
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