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ABSTRACT

Access to affordable, reliable, and sustainable energy is crucial for achieving the Sustainable Development Goals, improving quality of life, combating 
poverty, and fostering socioeconomic growth. However, a significant portion of the global population still struggles with energy poverty, lacking access 
to basic services such as electricity and clean cooking. Current strategies to combat this issue often rely on fossil fuels, which are costly and have 
negative environmental and health impacts. Hybrid energy systems offer a promising solution, but designing and evaluating them is complex. This 
study proposes an integrated approach for tackling that problem using Hybrid Optimization of Multiple Energy Resources (HOMER) software, along 
with the Criteria Importance Through Inter-Criteria Correlation (CRITIC) and multi-criteria decision making method (VIKOR). The methodology 
was applied to a case study in a remote region of Colombia. Results demonstrate that this approach enhances decision-making and identifies viable 
alternatives for energy-poor regions, providing a valuable tool for energy planning in developing contexts.
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1. INTRODUCTION

Energy is an essential resource for human progress, playing a 
crucial role in improving people’s quality of life and socioeconomic 
development (Bhandari et al., 2021; Peng et al., 2021). Universal 
access to energy has been established as a primary objective for 
sustainable development (Dehays and Schuschny, 2019), and 
several countries have directed their efforts towards achieving this 
goal (Elkadeem et al., 2021). However, in 2022 there were still 
685 million people without access to electricity and 2.1 billion 
without access to clean cooking in the world (International Energy 
Agency [IEA] et al., 2024).

The IEA predicts that by 2030, 660 million people will still lack 
access to electricity and 1.8 billion will continue relying on 
biomass, kerosene or charcoal for cooking (IEA et al., 2024). 
This challenge mainly affects rural areas in developing countries 

(Gómez et al., 2023; Juanpera et al., 2022; Leduchowicz et al., 
2022), where lack of access to reliable and sustainable energy 
sources adversely impacts health, education, economic growth and 
the environment (Abbas et al., 2020; Kaur et al., 2023).

IEA recognizes lack of access to modern energy services as energy 
poverty (Bonatz et al., 2019), and the main strategy for tackling 
it has been to extend electricity grids. However, this approach is 
economically and technically unfeasible in mountainous or remote 
regions, due to difficult terrain, low population density, and low 
energy consumption levels (Juanpera et al., 2020). As a result, 
traditional solutions often rely on diesel power plants, chosen for 
their affordability in initial investment, ease of construction, and 
operational maintenance (da Ponte et al., 2021; Kaur et al., 2023).

Despite the apparent convenience of diesel-based systems, 
they have significant drawbacks such as high operational 
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and maintenance costs due to fuel expenses and supply chain 
complexities. Furthermore, such systems generate negative 
environmental impacts and pose health risks, particularly when 
installed near residential areas (da Ponte et al., 2021; Fuso 
et al., 2014).

While acknowledging negative impacts of diesel, its use in power 
generation is expected to grow by 2030. This trend is mainly driven 
by the need for developing countries to expand energy access on 
a cost-effective way (Gómez et al., 2023; Juanpera et al., 2022). 
Furthermore, since renewable sources face challenges, such as 
supply variability, high initial costs, and their requirement for 
substantial land area for installation (Ullah et al., 2021).

Since both, traditional and renewable energy sources, have 
inherent disadvantages, the integration of multiple technologies 
into hybrid energy systems offers a promising solution, 
potentially enhancing sustainability performance and ensuring 
a more reliable, cost-effective energy supply (Aberilla et al., 
2020; Mallek et al., 2024; Ullah et al., 2021). However, hybrid 
systems introduce complexity in selecting and designing optimal 
solutions due to factors such as the numerous variables involved, 
uncertainties from non-linear component behavior, and variability 
in renewable resources and energy demand (Elkadeem et al., 
2021; Ridha et al., 2022).

Designing and sizing hybrid generation systems require meticulous 
attention to ensure system reliability. Meeting demand consistently 
and cost-effectively involves considering various technical and 
economic parameters. Several sizing methods can be employed for 
this purpose, including intuitive, numerical, analytical, stochastic, 
computer tools, and hybrid methods. The intuitive method is 
recognized for its simplicity, while software tools are noted for 
their user-friendliness. Additionally, software tools are highly 
effective in solving multi-objective optimization problems and 
are well-suited for conducting feasibility and sensitivity analyses 
(Ridha et al., 2021).

Recently, various software tools have been used for the design 
and sizing of generation systems, including HOMER, improved 
Hybrid Optimization by Genetic Algorithms (IHOGA), 
HYBRID2, HYBRIDS, System Advisor Model (SAM), Transient 
System Simulation Tool (TRNSYS), Renewable-energy and 
Energy-efficiency Technology Screening software (RETScreen), 
Visual Investment Planning Optimization & Revision (ViPOR), 
Offgridders, and Open-Source energy Modelling System 
(OseMOSYS) (Juanpera et al., 2020, 2022; Ridha et al., 2021; 
Rituraj et al., 2024). HOMER is a popular choice and, alongside 
ViPOR, is widely used in developing countries (Juanpera et al., 
2020; Rituraj et al., 2024). HOMER stands out because it enables 
users to consider numerous technologies in their designs and 
supports detailed system modeling (Juanpera et al., 2020).

Figure 1 illustrate the distribution of software and algorithms 
identified from the literature review. HOMER was found to be the 
leading software for addressing challenges in rural electrification. 
Additionally, a variety of tools used to optimize generation systems 
in rural settings were identified. These tools can be categorized 

into two groups: software packages such as Matrix Laboratory 
(MATLAB), Offgridders, IntiGIS, and Excel, and optimization 
algorithms including Multi-objective Ranking Mutant Dragonfly 
Algorithm (MORMDA), Bi-archive, and numerical methods.

Software tools enable technical-economic evaluation of energy 
projects. However, despite their capabilities, they may not fully 
encompass all critical aspects inherent to rural electrification 
challenges (Juanpera et al., 2020; 2022). Electrification projects 
are inherently multidimensional, involving diverse stakeholders 
with specific needs and expectations (Juanpera et al., 2020). The 
literature on energy alternative evaluations typically considers 
various criteria, including economic, technical, environmental, 
and social dimensions. Some studies also incorporate political and 
risk criteria. Table 1 presents the most relevant sub-criteria within 
these main dimensions. Prioritizing electrification projects should 
take these criteria into account to assess their potential success 
(Gómez et al., 2023).

Addressing multidimensional issues requires an interdisciplinary 
approach that considers all relevant aspects during evaluation. 
Multi-criteria methodologies play a crucial role in tackling these 
challenges by enabling the resolution of complex tasks and 
the identification of appropriate solutions. These tools help to 
mitigate the inherent uncertainties and complexities associated 
with multi-objective problems (Kotb et al., 2021; Peng et al., 
2021; Ullah et al., 2021).

Ridha et al. (2021), identify Multi-Objective Optimization based 
on ratio analysis (MULTIMOORA), Technique for Order of 
Preference by Similarity to Ideal Solution (TOPSIS), Analytic 
Hierarchy Process (AHP), Combined Distance-Based Assessment 
(CODAS), VIKOR, and Complex Proportional Assessment 
(COPRAS) as some of the most cited and well-known multi-
criteria methods. The literature review corroborates these findings. 
AHP, Best-Worst Method (BWM), and equal weighting are the 
most used methods for criteria weighting, as shown in Figure II. 
Figure III presents the methods used for alternative selection, 
with TOPSIS, VIKOR, MULTIMOORA, CODAS, and AHP 
being predominantly employed. Further details of these results 
are available in Table A1 in Appendix A.

This paper uses CRITIC and VIKOR methods to evaluate 
feasibility of different energy alternatives in a Colombian region. 

Figure 1: Tools used for sizing solutions



Tapia, et al.: Optimizing Energy Alternatives in Colombia’s Isolated Regions: A Multi-Criteria Evaluation

International Journal of Energy Economics and Policy | Vol 15 • Issue 2 • 2025272

Table 1: Commonly considered criteria for the evaluation of energy alternatives.
Criteria Sub-criteria Source
Environmental GHG emissions (GHG) Ali et al., 2020; Bhandari et al., 2021; Bilal et al., 2022; Das et al., 2022; Elkadeem et al., 2021; 

Elkadeem et al., 2021; Gómez et al., 2023; Juanpera et al., 2020, 2022; Kotb et al., 2021; Mallek  
et al., 2024; Mwanza and Ulgen, 2020; Ridha et al., 2021; Tariq et al., 2021; Ukoba et al., 2020; Ullah 
et al., 2021; Wang et al., 2022

Land requirement (LR) Bhandari et al., 2021; Bilal et al., 2022; Elkadeem et al., 2021; Kotb et al., 2021; Mwanza and Ulgen, 
2020; Peng et al., 2021; Ullah et al., 2021

Renewable fraction 
(RF)

Ali et al., 2020; Das et al., 2022; Elkadeem et al., 2021; Elkadeem et al., 2021; Kotb et al., 2021; 
Tariq et al., 2021

Economic Cost of energy (COE) Ali et al., 2020; Ali et al., 2020; Bhandari et al., 2021; Bilal et al., 2022; Das et al., 2022; Elkadeem  
et al., 2021; Elkadeem et al., 2021; Gómez et al., 2023; He et al., 2021; Kotb et al., 2021;  
Mallek et al., 2024; Peng et al., 2021; Tariq et al., 2021; Ukoba et al., 2020

Operation and 
Maintenance Cost 
(O&M)

Ali et al., 2020; Ali et al., 2020; Bhandari et al., 2021; Bilal et al., 2022; Das et al., 2022; Elkadeem 
et al., 2021; Elkadeem et al., 2021; He et al., 2021; Juanpera et al., 2020, 2022; Kotb et al., 2021; 
Mallek et al., 2024; Ukoba et al., 2020

Investment Cost (IC) Ali et al., 2020; Ali et al., 2020; Bhandari et al., 2021; Bilal et al., 2022; Das et al., 2022; Elkadeem 
et al., 2021; Elkadeem et al., 2021; He et al., 2021; Juanpera et al., 2020, 2022; Mallek et al., 2024; 
Mwanza and Ulgen, 2020; Ukoba et al., 2020

Social Social acceptance (SA) Aberilla et al., 2020; Ali et al., 2020; Bilal et al., 2022; Elkadeem et al., 2021; Juanpera et al., 2020, 
2022; Mallek et al., 2024

Job creation (JC) Aberilla et al., 2020; Bilal et al., 2022; Elkadeem et al., 2021, 2021; Mallek et al., 2024; Mwanza and 
Ulgen, 2020

Social Benefit (SB) Ali et al., 2020; Bhandari et al., 2021; Peng et al., 2021
Technical Reliability (Re) Ali et al., 2022; Ali et al., 2020; Ali et al., 2020; Bhandari et al., 2021; Bilal et al., 2022; Gómez et al., 

2023; Juanpera et al., 2020, 2022
Efficiency (Ef) Ali et al., 2020; Ali et al., 2020; Bhandari et al., 2021; Bilal et al., 2022; Peng et al., 2021; Wang et al., 2022
Technological maturity 
(M)

Ali et al., 2020; Elkadeem et al., 2021; Peng et al., 2021; Ukoba et al., 2020

Figure 2: Multi-Criteria methods used for criteria weighting

Figure 3: Multi-Criteria methods used for alternatives prioritization

The analysis integrates different technologies within hybrid 
systems to offer sustainable, reliable, and viable energy solutions. 
HOMER software was used for system design and sizing, CRITIC 
for criteria weighting and VIKOR for alternatives evaluation and 
prioritization.

CRITIC stands out as one of the most widely used approaches for 
criteria weighting. It is an objective method based on an algorithm 
that impartially calculates weight without incorporating decision-
makers’ preferences or biases. This method can deliver realistic 
and accurate weights, offering enhanced reliability compared 
to traditional objective weighting methods such as entropy and 
standard deviation (Ali et al., 2020).

On the other hand, VIKOR is a widely used method in evaluating 
energy alternatives, it was designed to address challenges involving 
conflicting criteria and differing units of measurement. It assesses 
the superiority of alternatives and identifies compromise solutions 
by measuring their proximity to the ideal solution. One of its main 
features is its ability to maximize group benefits while minimizing 
individual regrets, enhancing acceptance of compromise solutions 
by decision-makers (Lee and Chang, 2018). Additionally, VIKOR 
ensures result stability even with slight variations in criteria 
weights (Muñoz and Romana, 2016).

To show these methods’ applications and main findings, this paper 
is structured as follows: Section 2 outlines methodology for multi-
criteria analysis, detailing tools employed. Section 3 presents key 
findings derived from applying this methodology to design and 
evaluate different energy alternatives. Finally, Section 4 discusses 
principal conclusions drawn from analysis.
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Figure 4: Study methodology

2. MATERIALS AND METHODS

This study employed a four-phase approach to design and evaluate 
an optimal power generation system for the target region, as 
illustrated in Figure 4. The first phase focused on gathering 
essential information for energy generation system design. 
This information included characteristics of the study region, 
available energy resources, energy demand profile, and technical 
specifications and cost data for potential system components.

The second phase employed HOMER software for system 
modeling and optimization. This phase allowed the identification 
of optimal configurations, which were later evaluated to find 
the most suitable alternative for the region. The optimization 
process was conducted from an economic viability standpoint, 
with optimal alternatives for each configuration selected based 
on the lowest COE.

The third phase employed a multi-criteria decision-making 
(MCDM) approach to determine the optimal configuration for the 
region. This phase was subdivided into three stages. In sub-stage 
1, a decision matrix was constructed using optimization results 
from HOMER and supplemented with relevant data from literature 
review for aspects not covered by the software. In sub-stage 2, 
the CRITIC method was used to weight evaluation criteria, and, 
in sub-stage 3, alternatives were evaluated using VIKOR method, 
incorporating weighted criteria from the previous stage, HOMER 
optimization results, and literature review findings.

Finally, in phase four, a sensitivity analysis was conducted to 
validate the reliability of results. This analysis examined the 
sensitivity of the decision to key solution characteristics, including 
energy resources availability and fuel cost, as well as the impact of 
criteria weighting on the evaluation of optimal solutions derived 
from HOMER.

2.1. Input Data
A critical challenge when using HOMER software is to find the 
necessary input data for simulation and optimization. This includes 
data on load profiles, geographical conditions, available renewable 
resources, and techno-economic characteristics of system components. 
The comprehensive collection of this information is crucial for accurate 
modeling and reliable results (HOMER Energy, 2020).

Different sources can provide the necessary data for simulation 
and optimization. Solar radiation and wind speed data can be 
extracted from organizational websites like National Renewable 
Energy Agency (NREL), National Aeronautics and Space 
Administration (NASA), and the National Climatic Data Center 
(NCDC). Platforms like Solargis and Solcast supply solar radiation 
data, while Weatherbase and Windustry offer wind speed data 
(HOMER Energy, 2020). Renewables.ninja provides access to 
both solar radiation and wind speed, while PVGIS focuses on 
solar radiation for any location in the world (Rituraj et al., 2024). 
In Colombia, the Geo-Open data catalog managed by the Institute 
of Hydrology, Meteorology, and Environmental Studies (IDEAM) 
provides access to meteorological data, including solar radiation, 
wind speed, and temperature (IDEAM, n.d.), among others.
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To determine the load profile, HOMER uses data from Open 
Energy Information (OpenEI), which includes profiles for 16 
types of reference buildings across the 16 different climate zones 
in the United States. HOMER identifies the analyzed climate 
zone by approximating it based on the Koeppen Geiger climate 
classification to a predefined one (HOMER Energy, 2020). The 
profile can be established by importing or entering existing data, 
or by allowing the software to synthesize profiles using average 
daily load data that can be scaled to match the specific load under 
analysis (Lambert et al., 2006).

Technical and economic data on generation system components 
can be obtained from distributors’ websites such as Alternative 
Energy Store, and Solar Energy as well as from reports such as 
Renewable Energy Technology Characterizations and SolarBuzz 
(HOMER Energy, 2020). These data can also be obtained from 
previous studies, as done by Fontalvo et al. (2023) in their work.

2.2. Software HOMER
HOMER, developed by NREL in the United States, is an easy-to-
use simulation software used for modeling grid-connected and off-
grid systems, considering electrical and thermal loads for individual 
users or communities (Fontalvo et al., 2023). It integrates various 
generation technologies such as solar photovoltaic, wind turbines, 
energy cells, fossil fuels, alongside storage options like batteries, 
hydrogen storage, and supercapacitors (Qiblawey et al., 2022).

HOMER is commonly used for techno-economic analyses and 
provides insights into environmental impacts by estimating 
greenhouse gas emissions (Qiblawey et al., 2022). It facilitates 
comparison among different generation system design options 
based on technical and economic criteria, while also evaluating 
the effects of input variable uncertainties. HOMER’s core 
functionalities include simulation, optimization, and sensitivity 
analysis (Lambert et al., 2006).

Fundamental HOMER’s capability is long-term simulation 
of micro-energy systems. The simulation process allows for 
observation of how a system would work, considering specific 
components and a defined operating strategy. HOMER can model 
two different strategies to determine the interaction of generators 
with battery banks, the first, called Load Following (LF), in which 
only renewable sources charge the battery and the second, called 
Cyclic Charging (CC), in which when a generator is required it 
runs at full capacity, recharging the batteries with the surplus 
energy (Lambert et al., 2006).

During the simulation process, HOMER performs calculations 
of the energy balance between supply and demand, deciding how 
to manage the surplus of renewable energy or how to generate 
additional energy when needed (Lambert et al., 2006). These 
calculations are performed in simulation times of 1 year with a 
minimum resolution of one minute (Qiblawey et al., 2022). The 
fundamental outcome of this phase is to determine whether a 
system is viable by assessing its ability to meet the electrical or 
thermal load and other user-defined constraints, and to calculate 
the life-cycle cost of the system (Lambert et al., 2006).

Based on simulation results, HOMER evaluates and organizes 
various configurations, highlighting those with the best technical 
and economic performance through its optimization process 
(Fontalvo et al., 2023; Lambert et al., 2006). The goal of this 
process is to determine the optimal values for each decision 
variable to establish the most cost-effective system, which 
satisfies the load requirements and user-defined constraints, while 
minimizing the total net present cost (NPC) (Lambert et al., 2006).

Among the decision variables considered by HOMER are the 
size of the solar array, number of wind turbines, generator sizes, 
number of batteries, and dispatch strategy, among others. The 
software can automatically determine optimal sizes or quantities 
for each component, or alternatively, users can input multiple 
values for each decision variable within the search space, which 
are then considered during optimization (HOMER Energy, 2020; 
Lambert et al., 2006).

Users can also adjust key parameters for the optimization process, 
such as simulation time step duration, number of simulations, 
design accuracy, NPC sensitivity, and focus factor (HOMER 
Energy, 2020). These parameters enable the refinement and 
adjustment of software operations to achieve results aligned 
with the objectives and required accuracy. Fontalvo et al. (2023) 
indicate that utilizing short time intervals and a focus factor close 
to 1 can prevent the occurrence of local optima, although this may 
decelerate the simulation and optimization processes.

In parallel with the optimization process, HOMER can conduct 
sensitivity analyses on different numerical variables, such as 
energy resources behavior and fuel prices, which are beyond 
user control. This optional step allows the software to analyze 
any number of sensitive variables, perform optimization for each 
case, and present the results in various formats, either tabular or 
graphical. Sensitivity analysis primarily mitigates uncertainty 
and supports trade-off analyses, decision-making processes, and 
addressing critical questions (Lambert et al., 2006).

2.3. CRITIC Method
The CRITIC method, introduced by Diakoulaki et al. (1995), 
performs correlation analysis to identify differences between 
criteria (Ali et al., 2020). This method involves seven steps, 
outlined as follows:

Step 1: Construct the decision matrix.

A a

a a a
a a a

a a a

aij

n

n

m m mn

ij m n= =

…
…

…

= ×[ ] [ ]
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Where aij (aij ≥ 0) represents performance of ith alternative on jth 
criterion.

Step 2: Normalize the decision matrix.
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For non-beneficial criteria, minimum value will be the best and 
maximum value will be the worst. On the other hand, for beneficial 
criteria, maximum value will be the best, and minimum value will 
be the worst.

Step 3: Estimate standard deviation (σj) of each criterion.

Step 4: Create a symmetric matrix (nxn) with a generic factor 
rjk,which is the linear correlation coefficient vector between aj 
and ak.

Step 5: Determine the measure of conflict caused by criterion j.

k

m

jkr
=
∑ −
1

1( )  (3)

Step 6: Calculate the quantity of information concerning each 
criterion.

C ri j
k

m

jk= −
=
∑σ
1

1( )  (4)

Step 7: Estimate objective weights of each criterion.

W
C

C
j

j

k

m
j

=

=∑ 1

 (5)

2.4. VIKOR Method
The VIKOR method is developed in 4 stages, which are described 
as follows (Lee and Chang, 2018):

Step 1: Determine the positive and negative ideal solutions (A+) 
and (A-).

A f max f j I f min f j I jj i ij j i ij
+ + += = ∈ = ∈ ∀{ | }, { | },1 2  (6)

A f min f j I f max f j I jj i ij j i ij
− − −= = ∈ = ∈ ∀{ | }, { | },1 2  (7)

Where I1 and I2 correspond to sets of benefit and cost criteria 
respectively.

Step 2: Calculate the values Si and Ri.

S w
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f fi
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 (8)
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Where wj represents the criteria weights.

Step 3: Calculate Qi.

Q v
S S
S S

v
R R
R Ri

i i=
−

−
+ −

−

−

+

− +

+

− +
( ) ( )( )1  (10)

Where S+ = min(Si), S
- = max(Si), R

+ = min(Ri), R
- = max(Ri), and 

v is introduced as a weight of the strategy of maximum group 
utility, while (1−v) is the weight of individual opposition. The 
value of v ranges between 0 and 1. A value of v = 0.5 implies 
a consensus strategy between both positions. If v < 0.5 the 

minority decides, that is, the individual position takes on greater 
importance. Whereas, if v > 0.5, the majority decides (Muñoz 
and Romana, 2016).

Step 4: Order the alternatives in decreasing order according to 
Si, Ri, and Qi. The result obtained in this step is three lists, with 
which the one with the minimum Q (A(1)) can be defined as the 
compromise solution, if the following conditions are met (Muñoz 
and Romana, 2016):

Condition 1: Acceptable advantage

Q A Q A DQ( ) ( )
( ) ( )2 1− ≥  (11)

Where A(2) is the second alternative according to the classification 
of the values of Q and DQ.

DQ
j

=
−
1

1( )
 (12)

Where j is the number of alternatives.

Condition 2: Acceptable stability in the decision-making process. 
It must be fulfilled that alternative A(1) must be the best classified 
in the lists of S and/or R values.

If any of the conditions are not met, the process suggests moving 
to the definition of a compromise set of solutions, as follows:
•	 If condition 2 is not met, alternatives A(1) and A(2).
•	 If condition 1 is not met, the set consists of the alternatives A(1), 

A(2), A(3),… A(M) is determined by considering the relationship 
shown in Equation 13. These alternatives are close to the ideal 
solution.

Q A Q A DQM
( ) ( )
( ) ( )− <1  (13)

3. RESULTS

3.1. Load Estimation
The study focuses on the community of Cañado in Alto Baudó, 
a municipality in Colombia’s Chocó region. It is classified as a 
type 3 locality according to the Planning and Promotion Institute for 
Energy Solutions in Non-Interconnected Zones (IPSE), indicating it 
has between 51 and 150 subscribers or users (National Monitoring 
Center [CNM], 2021). The Mining and Energy Planning Unit 
(UPME),  as quoted by Fontalvo et al. (2023), estimates an average 
Colombian household of four people consumes approximately 157 
kWh of electricity per month. Considering the previous information 
and assuming the standard household consumption per subscriber 
in Cañadó, the estimated total community demand ranges from 
0.26 to 0.79 Mwh/day.

Figure 5 illustrates the load profile used for analysis. Given 
Colombia’s equatorial location, the profile is expected to remain 
relatively uniform throughout the year, without significant seasonal 
variations (Fontalvo et al., 2023). The community’s average annual 
energy demand is approximately 32.7 kW, with peak demand 
reaching 97.1 kW. Weekday average demand is 33.7 kW, while 
weekend demand averages 30.2 kW.
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Figure 5: Community load profile, on weekday and weekend

Figure 6: Average solar radiation per month in Alto Baudó – Chocó

Figure 7: Wind speed and average temperature per month in Alto 
Baudó - Chocó

3.2. Analysis of Available Resources
Weather and climate data for Alto Baudó were extracted from 
NASA's Prediction Of Worldwide Energy Resources (POWER) 
database for the period from January 2018 to March 2022 (NASA, 
n.d.). Figure 6 illustrates the average monthly global horizontal 
radiation (GHI). Peak radiation occurs between August and 
October, with the region receiving an average GHI of 4 kWh/
m2/day. The clarity index varies between 0.32 and 0.46 and is 
relatively uniform throughout the year.

Figure 7 presents the average wind speed at 10 meters height and 
the average temperature in the region. The average wind speed 
is approximately 0.8 m/s. The average monthly temperature is 

24.94°C, with minimal seasonal variation. Temperatures range 
from a maximum of 25.33°C to a minimum of 24.46°C, indicating 
a stable tropical climate.

3.3. System Design
The case study focuses on an integrated energy system that 
comprises several key components: the community’s energy 
demand profile, a diesel generator, wind turbines, solar panels, an 
energy converter system, and a storage system. Figure 8 presents a 
schematic diagram of the system as modeled in HOMER software.

The design incorporates both alternating current (AC) and direct 
current (DC) buses, which serve as the main power distribution 
pathways. The AC generation systems are connected to the 
grid via the AC bus, while auxiliary systems such as batteries 
and solar panels are connected via the DC bus. This dual-bus 
configuration allows for efficient integration of various power 
sources and storage systems. Table 2 provides detailed technical 
specifications and cost characteristics for each component used 
in the system design.

3.4. Optimization with HOMER
HOMER software was used to optimize a hybrid (PV-WT-DG-
Bat-Conv) power generation system. The optimization considered 
a projected diesel price of US $2.7/gallon by the end of 2024 
(UPME, 2023), an inflation of 5%, and a discount rate of 10%. 
The evaluation period was 25 years, corresponding to the project’s 
life cycle. LF and CC control strategies were tested, and each 
component was optimized based on the minimum NPC and the 
minimum COE.

The optimization was conducted in 60-min intervals with a 
focus factor of 5. From the simulation, various combinations 
of equipment were obtained that represent feasible alternatives 
for energy supply in the study region. Combinations were 
excluded if they were infeasible, posed stability risks in demand 
coverage, or lacked essential components like the converter or 
battery bank. Each alternative considered represents the most 
economically viable option among the possible combinations. 
Table 3 presents the different configurations selected from the 
optimization process.

Figure 8: Schematic of the system designed in HOMER
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Table 2: Equipment considered for analysis
Component Initial Cost Replacement OandM Service Life Source
PV $1,159/kW $747/kW $17/year 25 years Munoz et al., 2021
WT $147,250/t $147,250/t $2945/year 20 years Fontalvo et al., 2023
DG $665/kW $535/kW $0.027/h 15,000 h Fontalvo et al., 2023
Conv $300/kW $300/kW $0/year 15 years Fontalvo et al., 2023
Bat $5,406/Bat $5,406/Bat $108/year Degradation cycle Fontalvo et al., 2023

Table 3: Selected Settings
System Components
S1 PV-DG-Bat-Conv
S2 PV-WT-DG-Bat-Conv
S3 DG-Bat-Conv
S4 WT-DG-Bat-Conv
S5 PV-Bat-Conv
S6 PV-WT-Bat-Conv

Table 4 presents the configurations derived from HOMER for 
each of the six alternatives, along with their corresponding NPC, 
COE, IC, O&M, RF, and GHG. COE values range from $0.345/
kWh to $0.602/kWh. Among the alternatives, S1 is the most 
economically viable, whereas S5 and S6 demonstrate the lowest 
GHG due to their reliance on renewable sources.

3.5. Multi-criteria Selection of Energy Alternatives
The selected alternatives were evaluated across economic, 
environmental, social, and technical dimensions, considering a 
total of 9 sub-criteria detailed in Table 5. For the evaluation of 
alternatives, the JC subcriterion was divided into two categories: 
Job Creation in the Construction and Installation stage (JCCI) and 
Job Creation in the Operation and Maintenance stage (JCOM). 
To ensure a comprehensive assessment, the results obtained from 
HOMER were supplemented with technical data sourced from the 
literature review.

Based on the data presented in Table 6 and additional findings 
from the literature review, a decision matrix was constructed 
(Table 6) to prioritize the different criteria and sub-criteria. The 
CRITIC method was employed to rank the criteria based on their 
importance. Table 7 presents the results of criteria weighting. 
The Technical dimension was ranked as the most critical, with a 
weight of 35%, whereas the economic dimension ranked lowest, 
with 10%. It is important to consider that the technical dimension 
included three sub-criteria, while the economic included only one 
sub-criterion.

Among the sub-criteria, the most relevant were Reliability 
and Land requirement, each carrying a weight of 12.6%, 
followed by Efficiency with 12.5%, and the renewable fraction 
with 10.8%. In contrast, Technological maturity and Cost of 
energy were ranked lowest, with weights of 10.0% and 9.7%, 
respectively.

Subsequently, the VIKOR method was used to prioritize 
the alternatives. Alternative S1 emerged as the compromise 
solution. This configuration includes a photovoltaic system, 
diesel generator, battery set, and converter (Table 8). Figure 9 

illustrates the operational details of S1, demonstrating its 
capability to meet the required load with a 13.3% surplus of 
electricity, providing storage for batteries and backup in case 
of system failure. A detailed cost breakdown for S1 is shown in 
Figure 10, indicating that 34% of its expenses are attributable 
to fuel costs, highlighting its vulnerability to fluctuations in 
diesel prices.

4. SENSITIVITY ANALYSIS

4.1. Power Generation System
A sensitivity analysis was conducted using HOMER to evaluate 
the impact of variations in solar radiation, wind speed, and diesel 
cost on the optimization of solutions. The analysis revealed a 
positive correlation between diesel cost and the Cost of Energy 
(COE). Additionally, it demonstrated that improved availability of 
renewable resources contributes to reducing the COE, as illustrated 
in Figure 11.

Regression analysis was performed to quantify the relationships 
between these variables and the COE. Results indicated that 
diesel prices have the most significant influence on the energy 
cost outcome. Analysis of variance yielded an F-statistic of 
approximately 232, with a critical F-value of 3.61E-12. When 
considered alongside the R² value, these statistics suggest a good 
model fit and indicate coefficients of independent variables are 
jointly significant. Detailed results of regression analysis are 
presented in Table A2 and A3 in Appendix B.

4.2. Multi-Criteria Assessment
Finally, a sensitivity analysis was conducted to evaluate the 
influence of criteria weights on the ranking of alternatives. 
This analysis also compared results across different multi-
criteria methods, including VIKOR, TOPSIS, and Preference 
Ranking Organization Method for Enrichment Evaluation II 
(PROMETHEE II). Various weighting scenarios were assessed, 
such as Shannon’s Entropy for objective weighting and equal 
weighting for each criterion. Additionally, scenarios were 
constructed using AI assistants like ChatGPT, Gemini, Claude, 
Microsoft Copilot, and Leo, from Environmental, Social, 
Economic, and Technical perspectives. These scenarios are 
summarized in Table 9.

The results of the sensitivity analysis are presented in Table 10. 
Using VIKOR, alternative S1 emerged as the most preferred 
option, ranking first in 5 out of 7 scenarios, and was part 
of the compromise set in 6 scenarios, excluding only the 
Technical perspective. S5 ranked first in the Environmental 
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Table 4: Optimization results
Components Characteristics

System PV 
(kW)

WT 
(Qty.)

DG 
(kW)

Bat 
(Qty.)

Conv 
(kW)

NPC 
(MM $)

COE  
($/kWh)

IC  
(MM $)

OandM 
(M$/y)

RF 
(%)

GHG 
(Ton/y)

S1 176.3 0.0 110.0 35.0 56.2 1.43 0.345 0.50 13.008 42.9 122.4
S2 175.4 1.0 110.0 35.0 55.6 1.61 0.390 0.65 15.753 45.0 118.0
S3 0.0 0.0 110.0 15.0 34.1 1.78 0.430 0.17 17.815 - 247.6
S4 0.0 1.0 110.0 15.0 33.5 1.96 0.474 0.32 20.597 - 241.7
S5 747.0 0.0 0.0 120.0 96.3 2.30 0.557 1.57 25.658 100.0 -
S6 753.4 1.0 0.0 116.0 101.1 2.49 0.602 1.71 28.281 100.0 -

Table 5: Selected evaluation criteria
Criteria ID Sub-criteria Unit Source
Economic C1 COE U$ HOMER
Environmental C2 RF % HOMER

C3 GHG Ton/yr HOMER
C4 LR m2/kWh Marques et al., 2021

Social C5 JCCI Job-year/MW Marques et al., 2021
C6 JCOM Job/MW Marques et al., 2021

Technical C7 M Scale 1–5 Lee and Chang, 2018
C8 Ef % Marques et al., 2021
C9 Re % Rahman et al., 2013

Table 6: Decision matrix for multi-criteria evaluation
System/  
Sub-criteria

C1 C2 C3 C4 C5 C6 C7 C8 C9

S1 0.345 42.9 122.4 0.0058 15.26 0.85 5.00 46.1 24.7
S2 0.390 45.0 118.0 0.0058 15.20 0.85 4.98 45.2 24.8
S3 0.430 - 247.6 0.0003 1.30 0.14 5.00 80.0 40.0
S4 0.474 - 241.7 0.0003 1.35 0.14 4.97 78.6 40.0
S5 0.557 100.0 - 0.0100 26.00 1.40 5.00 20.0 13.0
S6 0.602 100.0 - 0.0099 25.80 1.39 4.99 20.0 13.2

Table 7: Criteria weighting
Criteria Weight ID Sub-criteria Weight 
Economic 10% C1 COE 9.7%
Environmental 34% C2 RF 10.8%

C3 GHG 10.6%
C4 LR 12.6%

Social 21% C5 JCCI 10.6%
C6 JCOM 10.6%

Technical 35% C7 M 10.0%
C8 Ef 12.5%

Re 12.6%

Table 8: Ranking of alternatives
System Metric

Si Ri Qi
S1 0.42 0.07 0.00
S2 0.52 0.08 0.42
S3 0.46 0.11 0.45
S5 0.46 0.13 0.62
S6 0.51 0.13 0.78
S4 0.57 0.11 0.83

scenario, while S3 led in the Technical scenario and was 
identified as part of the Ideal Solution in the Shannon’s Entropy 
weighting scenario. Alternative S2 was part of the compromise 

solution in the Environmental and Social scenarios, while S6 
was part of the compromise solution in the Environmental 
perspective.

Comparisons between VIKOR, TOPSIS, and PROMETHEE 
II methods revealed significant impacts of methodological 
choices on decision outcomes. TOPSIS produced notably 
different rankings compared to VIKOR. For instance, S1, often 
identified as the Most Preferred Solution using VIKOR, was 
only first in two scenarios with TOPSIS: Shannon’s Entropy 
and Economic. Conversely, S5, less favored by VIKOR, ranked 
first in three scenarios under TOPSIS: CRITIC, Equal Weights, 
and Economic.



Tapia, et al.: Optimizing Energy Alternatives in Colombia’s Isolated Regions: A Multi-Criteria Evaluation

International Journal of Energy Economics and Policy | Vol 15 • Issue 2 • 2025 279

Figure 9: S1 alternative operation details

Figure 10: Cost structure of the S1 alternative

Table 9: Weighting scenarios
ID CRITIC Shannon 

Entropy
Equal 

Weights
Environmental Social Economic Technical

C1 9.7 16.4 11.1 5.1 18.4 28.8 9.6
C2 10.8 5.1 11.1 25.0 9.4 7.5 10.8
C3 10.6 5.5 11.1 26.0 9.0 2.5 7.0
C4 12.6 8.1 11.1 16.0 7.2 4.3 6.8
C5 10.6 9.0 11.1 3.1 21.0 13.9 3.5
C6 10.6 10.8 11.1 1.9 16.0 11.9 2.1
C7 10.0 16.8 11.1 4.9 3.1 7.9 18.0
C8 12.5 13.6 11.1 11.4 4.9 14.8 22.0
C9 12.6 14.6 11.1 6.6 11.0 8.5 20.2

100 100 100 100 100 100 100

On the other hand, PROMETHEE II showed greater alignment 
with VIKOR results. S1 ranked first in four scenarios: CRITIC, 
Shannon’s Entropy, Equal Weights, and Economic. S5 led in the 

Environmental and Social scenarios, whereas S3 ranked first in 
the Technical scenario. In pairwise comparisons, TOPSIS matched 
VIKOR 31% of the time, while PROMETHEE II matched VIKOR 



Tapia, et al.: Optimizing Energy Alternatives in Colombia’s Isolated Regions: A Multi-Criteria Evaluation

International Journal of Energy Economics and Policy | Vol 15 • Issue 2 • 2025280

Table 10: Multicriteria Sensitivity Analysis Results
Scenario VIKOR Topsis PROMETHEE II

Position Position Position
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

CRITIC S1 S2 S3 S5 S6 S4 S5 S6 S2 S1 S3 S4 S1 S3 S5 S6 S2 S4
Ent. Shannon S1 S3 S2 S5 S4 S6 S1 S3 S4 S2 S5 S6 S1 S3 S5 S2 S4 S6
Equal Weights S1 S5 S2 S3 S6 S4 S5 S6 S2 S1 S3 S4 S1 S5 S3 S6 S2 S4
Environmental S5 S6 S1 S2 S3 S4 S6 S5 S2 S1 S4 S3 S5 S6 S1 S2 S3 S4
Social S1 S2 S5 S6 S3 S4 S5 S6 S1 S2 S3 S4 S5 S1 S6 S2 S3 S4
Economic S1 S2 S3 S4 S5 S6 S1 S2 S5 S6 S3 S4 S1 S2 S3 S5 S4 S6
Technical S3 S1 S2 S4 S5 S6 S3 S4 S1 S2 S5 S6 S3 S1 S4 S2 S5 S6

Figure 11: Sensitivity analysis in HOMER

60% of the time. All three methods placed the alternatives in the 
same positions 29% of the time.

Regardless of differences or similarities between methods, it’s 
crucial to note that a key advantage of VIKOR is its ability to 
assess decision significance and determine the superiority of 
alternatives. For instance, in the Environmental scenario, it 
provided a set of four solutions, while in the Social scenario, it 
offered two. This indicates similar performance across options 
for these perspectives, allowing for greater flexibility in decision-
making.

5. DISCUSSION AND CONCLUSION

This study proposes a multi-criteria evaluation model for energy 
solutions, comprising two fundamental stages: E3 design and 
optimization of alternatives using HOMER software, followed by 
evaluation using the CRITIC and VIKOR multi-criteria methods. 
HOMER facilitated the identification of the best combinations of 
generation technologies for the study region at the best possible 
cost, while MCDM allowed for a comprehensive evaluation.

The combined use of these tools identified alternative S1 as 
the optimal solution for Alto Baudó, Colombia. This system 
integrates Solar Photovoltaic technology with a Diesel Generator 
and a Battery Bank. By combining renewable and non-renewable 
sources, this hybrid system offers both reliability and affordability, 
leveraging the advantages of each component.

Beyond identifying the best-cost alternatives, the analysis 
revealed the importance of considering multiple dimensions when 

addressing energization problems, given their multidimensional 
nature. It was possible to recognize the relevance of complementing 
the technical-economic analysis, obtained from HOMER, with the 
analysis of social and environmental variables using multi-criteria 
methods.

The CRITIC method was employed to determine objective weights 
of the evaluation criteria, mitigating the risk of biases since it 
eliminates human interaction in this step. This method utilized 
available information from the criteria against different alternatives 
to establish the importance of each indicator.

On the other hand, methods such as VIKOR become formidable 
tools to address rural energization problems, allowing the 
evaluation of different dimensions in decision making. Since 
HOMER limits its analysis to technical and economic aspects, 
multi-criteria tools become a fundamental complement to perform 
a comprehensive evaluation.

The sensitivity analysis revealed how decision outcomes can be 
influenced by the perspective used to define criteria weights and the 
chosen evaluation method. Then, decision-makers are responsible 
for determining the multi-criteria tool for the evaluation of energy 
projects. Selecting the multi-criteria method can be a complex step 
in the decision-making process; however, it is advisable to research 
and learn about the tools to choose the one that best aligns with 
the objectives pursued.

To explore different perspectives, this study used artificial 
intelligence tools to build weighting scenarios and verify how the 
preferred alternatives varied according to different standpoints in 
criteria weighting. This does not replace subjective evaluation, 
which can enrich this process by allowing the priorities of different 
stakeholders to be reflected and solutions to be tailored to the 
context of the country and region where the evaluation is being 
conducted.

Another finding of the sensitivity analysis is that the availability 
of renewable resources significantly enhances the affordability 
and stability of energy solutions by mitigating the risks associated 
with fuel cost fluctuations, such as diesel. These findings 
suggest that expanding the range of renewable alternatives, 
considering alternatives such as hydrogen, biomass, thermal 
energy, and hydropower, could further improve the robustness 
and sustainability of the energy solutions proposed in this 
study. Moreover, a deeper exploration of the energy-water-food 
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nexus in the Colombian context could provide valuable insights 
into the interrelationships and potential benefits of integrating 
improvements across these sectors.

The proposed evaluation model demonstrates the efficacy of 
integrating simulation and optimization tools with multi-criteria 
evaluation methods. This integrated approach enables the 
identification and prioritization of sustainable, context-appropriate 
energy solutions, supporting energy planning processes in 
countries such as Colombia, which aspire to achieve universal 
energy access, a valuable strategy for addressing energy poverty 
in remote areas of developing countries.
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APPENDICES

A. Literature Review Results
The table presents the results of the literature review, detailing the methods and tools utilized by each author during each stage of their 
research.

Table A3: Reliability of regression coefficients
Variables Coefficients Typical error Statistic t Probability
Interception 0.33 0.02 15.69 2.80E-10
D 0.14 0.01 25.87 3.20E-13
S −0.02 0.00 −3.55 3.22E-03
W −0.01 0.00 −3.76 2.13E-03

Table A2: Regression analysis results
Regression results
Multiple correlation coefficient 0.990
Coefficient of determination R^2 0.980
R^2 Adjusted 0.976
Typical error 0.008
F 232.000
F Critical value 3.16E-12

Table A1: Methods and tools for energy optimization and evaluation
Method/Tool Source

Weighting of criteria Ranking of alternatives Optimization
Equal weighting VIKOR Aberilla et al., 2020
CRITIC CODAS Ali et al., 2020
AHP CODAS, EDAS, WASPAS, MULTIMOORA Ali et al., 2020
BWM, IDOCRIW Cocoso Ali et al., 2022
AHP AHP Bhandari et al., 2021
AHP AHP Bilal et al., 2022
AHP TOPSIS da Ponte et al., 2021
Equal weighting TOPSIS HOMER Das et al., 2022
BWM VIKOR, TOPSIS HOMER, MATLAB Elkadeem et al., 2021
AHP VIKOR, WASPAS, CODAS, TOPSIS HOMER Elkadeem et al., 2021

MATLAB
MOPOSO algorithm

Fioriti et al., 2021

AHP VIKOR IntiGIS Gómez et al., 2023
EWM
G1-Method

MULTIMOORA, TOPSIS, EDAS He et al., 2021

Weight Assignment Commitment Programming Offgriders Juanpera et al., 2020
EWM TOPSIS Kaur et al., 2023
AHP VIKOR HOMER Kotb et al., 2021
AHP PROMETHEE HOMER Mallek et al., 2024
AHP, BWM VIKOR, TOPSIS Numerical Method Ridha et al., 2022
AHP AHP Mwanza and Ulgen, 2020
Maximizing Deviation ELECTRE I Peng et al., 2021
BWM PROMETHEE II, TOPSIS Bi-Archive Algorithm Ridha et al., 2023
AHP, BWM TOPSIS, PROMETHEE II MORMDA algorithm Ridha et al., 2024

TOPSIS HOMER, MATLAB, EXCEL Tariq et al., 2021
AHP TOPSIS HOMER Ukoba et al., 2020
AHP MULTIMOORA, TOPSIS, EDAS HOMER Ullah et al., 2021
GRP GRP Wang et al., 2022

B. Regression Analysis Results
The tables present linear regression results. The first table provides a measure of the model’s fit. The second table details the significance 
of the regression coefficients for each independent variable.


