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ABSTRACT

This paper examined the oil futures and the carbon emissions futures volatility comovements and spillovers for crude oil, gasoline and heat oil as
well as carbon emissions. The data used in this study was the daily data from 2009 to 2014. The three multivariate GARCH models, namely the
vector autoregression model (VAR) (3)-diagonal VECH, the VAR (3)-diagonal Baba, Engle, Kraft and Kroner (BEKK) and the VAR (3)- constant
conditional correlations (CCC), were employed. The empirical results showed that the estimates of the VAR (3)-diagonal VECH and the VAR (3)-CCC
parameters were statistically significant in a case involving oil except in the case of carbon emissions. This indicates that the short run persistence of
shocks on the dynamic conditional correlations was greatest for RGASOLINE with RHEATOIL, while the largest long run persistence of shocks to
the conditional correlations for RCRUDE with RGASOLINE. At the same time the VAR (3)-diagonal BEKK parameters were statistically significant
in all cases. This indicates that the short run persistence of shocks on the dynamic conditional correlations is greatest for RHEATOIL with RCO,,
while the largest long run persistence of shocks to the conditional correlations for RCRUDE with RCO, and RHEATOIL with RCO,,. Finally, we
would choose the best model next by considering the value of log-likelihood, Akaike information criterion, Schwarz information criterion and
Hannan-Quinn information criterion. The value of these figures, it could be concluded that we should choose the VAR (3)-diagonal BEKK model
in volatility analysis of the oil futures and the carbon emissions futures returns. In addition, we could conclude that oil futures volatility having an

impact on carbon emissions futures volatility.

Keywords: The Oil Futures and the Carbon Emissions Futures Volatility, Comovements and Spillovers, Multivariate GARCH Models
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1. INTRODUCTION

The uncertainty of the current economic conditions caused
climate changes, the change in the price of oil. The carbon
emission trading has happened. Later, there is an urge to
develop quantitative tools to model and understand the origins
of variations in carbon emissions prices and effects in oil prices.
Information on the movement of these variables has operational
and political implications relevant to the main players in the
market such as polluters and regulators. As Stern (2006) pointed
out, this is one of the first steps in order to deal with climate
change and we may say that this has been one of the principal
contributions of Phase I of the European Union Emission Trading
Scheme (EU ETS).

Due to the reasons above, it is main cause of the EU ETS launch,
in January 2005, of the EU ETS has been the establishment of a

price for carbon emissions. Carbon emissions trading are emissions
trading specifically for carbon dioxide (calculated in tonnes of
carbon dioxide equivalent or tCO,e) and currently make up the
bulk of emissions trading. It is one of the ways countries can
meet their obligations under the Kyoto protocol to reduce carbon
emissions and thereby mitigate global warming.

As it is well known, the EU ETS is organized in three phases.
Phases I was considered as a pilot phase and it run from
January 1, 2005 to December 31, 2007. On the other hand, Phases II
started from January 1, 2008 and run until December 31, 2012.
Finally, Phase Il of the EU ETS started from January 1, 2013 and
will probably last until December 31, 2020.

Trading exchanges have been established to provide a spot market
in permits, as well as futures and options market to help discover
a market price and maintain liquidity. Carbon prices are normally
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quoted in Euros per ton of carbon dioxide or its equivalent.
However, in this study, we choose to use futures market due to
trading together quite a lot.

Currently there are exchanges trading in carbon credits:
the European Climate Exchange (ECX), NASDAQ OMX
Commodities Europe, PowerNext, Commodity Exchange
Bratislava and the European Energy Exchange. Many companies
now engage in emissions abatement, offsetting, and sequestration
programs to generate credits that can be sold on one of the
exchanges. But the market we are interested in that is ECX because
trading volume in large quantities.

The ECX manages the product development and marketing for
ECX Carbon Financial Instruments (ECX), listed and admitted
for trading on the intercontinental exchange (ICE) Futures Europe
electronic platform. It listed on the London Stock Exchange. ECX
futures is the most liquid, pan-European platform for carbon
emissions trading, with its futures contract based on the underlying
EU allowances (EUAs) and Certified Emissions Allowances
(CERs) attracting over 80% of the exchange-traded volume in the
European market. ECX contracts (EUA and CER futures, options
and spot contracts) are standardized exchange-traded products and
all trades are cleared by ICE Clear Europe.

The purpose is to analyze the oil futures and the carbon emissions
futures volatility comovements and spillovers among major oil
including crude oil (West Texas Intermediate market), gasoline
and heat oil as well as carbon emissions by using multivariate
GARCH, namely the diagonal VECH, the diagonal Baba, Engle,
Kraft and Kroner (BEKK) and constant conditional correlations
(CCC) model and choose the best way for such analysis. In
addition to see if the oil future returns do have an impact on
carbon emissions future returns, it could also be the case of oil
futures volatility having an impact on carbon emissions futures
volatility or not. We can explain more in the next section, which
is related to the literature reviews, research methodology and
empirical results.

2. LITERATURE REVIEW

Since the beginning of the EU ETS, the interest in studying the
carbon emissions markets from a financial point of view has
exponentially increased.

Uhrig-Homburg and Wagner (2007) analyzed the relationship
between spot and futures prices in the EU ETS. Their empirical
evidence suggested that, after December 2005, spot and futures
prices were linked by the cost-of-carry approach. Alberola
and Chevalier (2009) focused in the study of the intra-period
banking during Phase I and the effects of inter-period banking
restrictions between Phase I and II of the EU ETS. Furthermore,
a variety of articles including Mansanet-Bataller et al. (2007)
and Alberola et al. (2008) have focused their attention on the
determinants of carbon emissions prices. They provide evidence
that lagged energy prices (oil and natural gas) as well as weather
variables may explain carbon emissions price for the first period
of the EU ETS.

Concerning carbon emission prices’ determinants for Phase II of
the EU ETS, Mansanet-Bataller and Pardo (2011) find that the
contemporary energy variables, specifically oil, gas and coal,
have the expected impact on carbon emission prices. That is, the
increase in the prices of oil and natural gas that makes the prices
of carbon emissions increase. On the contrary, the increase in the
price of coal that makes the price of carbon emissions reduction.
So, in the Phase II of EU ETS, increasing the prices of fuel is
directly transmitted to carbon emission prices. The effect of energy
prices on carbon emission has further been confirmed by Bunn
and Fezzi (2007). They studied the impact of the EU-ETS on the
wholesale electricity market in the United Kingdom. The results
of a cointegrated vector autoregression model (VAR) estimation
highlight the essential role of energy prices, especially that of
natural gas, in determining the price of emission allowances. In
addition, Chavallier (2011) analyzes the time-varying correlations
in oil, gas and carbon dioxide futures prices using BEKK, CCC
and DCC-MGARCH models and identify dynamic correlations
between energy and carbon emission market.

Look back to the conditional volatility of the petroleum futures by
using multivariate GARCH and no carbon emissions are involved.
Manera et al. (2012) analyze the conditional volatility of future
prices for four energy commodities (crude oil, heat oil, gasoline
and natural gas) using CCC and DCC multivariate GARCH
models. They find that the spillovers between commodities and
the conditional correlations among commodities are high and time-
varying. As well as Bunnag (2015) examined comovements and
spillovers in petroleum futures (crude oil, gasoline, heat oil and
natural gas) using three multivariate GARCH models, namely the
VAR (1)-diagonal VECH, the VAR (1)-diagonal BEKK and the
VAR (1)-CCC models. The empirical results overall showed
that the estimates of the multivariate GARCH parameters were
statistically significant in almost all cases except in the case
of gasoline with natural gas. This indicates that the short run
persistence of shocks on the dynamic conditional correlations
was greatest for crude oil with heat oil, while the largest long run
persistence of shocks to the conditional correlations for crude oil
with gasoline.

Finally, Mansanet-Bataller and Soriano (2012) have focused on
price volatility transmission between carbon emissions prices
and energy market using the BEKK model. The results show that
carbon emissions prices are directly affected by their own volatility
and have the conditional correlation between carbon emissions
with the energy market such as oil and natural gas.

However, in this study we use the popular multivariate GARCH
include the diagonal VECH, the diagonal BEKK and the CCC
model as detailed below.

3. RESEARCH METHODOLOGY

3.1. Multivariate GARCH Models

The basic idea to extend univariate GARCH models to multivariate
GARCH models is that it is significant to predict the dependence
in the comovement of the oil futures and carbon emissions futures
returns. To recognize this feature through a multivariate model
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would generate a more reliable model than separate univariate
models.

In the first place, one should consider what specification of a
multivariate GARCH model should be imposed. On the one hand,
it should be flexible enough to state the dynamics of the conditional
variances and covariances. On the other hand, as the number of
parameters in a multivariate GARCH model increase rapidly
along with the dimension of the model, the specification should be
parsimonious to simplify the model estimation and also reach the
purpose of easy interpretation of the model parameters. However,
parsimony may reduce the number of parameters, in which
situation the relevant dynamics in the covariance matrix cannot be
captured. So it is important to get balance between the parsimony
and the flexibility when designing the multivariate GARCH model
specification. Another feature that multivariate GARCH models
must satisfy is that the covariance matrix should be positive
definite.

Several different multivariate GARCH model formulations have
been proposed in the literature, and the most popular of these are
the diagonal VECH, the diagonal BEKK and CCC models. Each
of these is discussed briefly in turn below; for a more detailed
discussion, Kroner and Ng (1998).

3.2. The Diagonal VECH Model

The first multivariate GARCH model was introduced by
Bollerslev et al. in 1988, which is called VECH model. It is much
general compared to the subsequent formulations. In the VECH
model, every conditional variance and covariance is a function
of all lagged conditional variances and covariances, as well as
lagged squared returns and cross-products of returns. The model
can be expressed below:

q P
VECH(H,)=c+ Y AVECH(e_g/ )+ Y BVECH(H_), (1)
j=1

j=1
Where VECH(H,) is an operator that stacks the columns of the

lower triangular part of its argument square matrix, H, is the

covariance matrix of the residuals, N presents the number of
. . . . . N(N+1

variables, 7 is the index of the #" observation, ¢ is an g x1

NN +D)  N(N+1)

vector, Aj and Bjare parameter matrices and

€ is an Nx1 vector.

The condition for /, is to be positive definite for all ¢ is not
restrictive. In addition, the number of parameters equals to

(p+q)x(N(N+1) L NV+D)

2 , which is large. Furthermore,

it demands a large quantity of computation.

The diagonal VECH model, the restricted version of VECH,
was also proposed by Bollerslev et al. (1988). It assumes the
Aj and B, in equation (1) are diagonal matrices, which makes
it possible for / to be positive definite for all 7. Also, the
estimation process proceeds much smoothly compared to the

complete VECH model. However, the diagonal VECH model

with (p+q+1)><N><(N2+1)

parameters is too restrictive since

it does not take into account the interaction between different
conditional variances and covariances.

3.3. The Diagonal BEKK Model

To ensure positive definiteness, a new parameterization of
the conditional variance matrix /, was defined by Baba et al.
(1990) and became known as the BEKK model, which is
viewed as another restricted version of the VECH model. It
achieves the positive definiteness of the conditional variance
by formulating the model in a way that is property is implied
by model structure.

The form of the BEKK model is as follows:

q K
H =CC+Y Y A £l A+

p K
D BH By ()
=1 k=1 =1 k=

1

Where Akj, Bkj and C are NxN parameter matrices, and C is a
lower triangular matrix. The purpose of decomposing the constant
term into a product of two triangle matrices is to guarantee the
positive semi-definiteness of /. Whenever K>1, an identification
problem would be generated for the reason that there are not only
single parameterizations that can obtain the same representation
of the model.

The first order BEKK model is:
H =CC'+A4%¢ g/ ,A+B’H_B 3)

The BEKK model also has its diagonal form by assuming A, B,
matrices are diagonal. It is a restricted version of the diagonal
VECH model. The most restricted version of the diagonal BEKK
model is the scalar BEKK one with A=al and B=bI where a and
b are scalars.

Estimation of a BEKK model still bears large computations due
to several matrix transpositions. The number of parameters of the

N(N +1)

complete BEKK model is (p+¢)KN> + . Even in the

diagonal one, the number of parameters soon reduces to

N(N+1)

(p+q)KN + , butitis still large. The BEKK form is not

linear in parameters, which makes the convergence of the model
difficult. However, the strong point lies in that the model structure
automatically guarantees the positive definiteness of /. Under
the overall consideration, it is typically assumed that p=¢g=K=1 in
BEKK form’s application.

3.4. CCC Model

The CCC model was introduced by Bollerslev in 1990 to primarily
model the condition covariance matrix indirectly by estimating
the conditional correlation matrix. The conditional correlation
is assumed to be constant while the conditional variances are
varying.
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Consider the CCC model of Bollerslev (1990):

Y= E<yt |E71>+8n
var (¢ |F,_ )= DID,

g, =Dn, 4)

Where Wi :(ylt AAAAA ymt)” N, :( It .. nmt), is a sequence of

independently and identically distributed (i.i.d) random vectors,

F, is the past information available at time

t,D, =diag(hf/2,...,h;/2), m is the number of returns, and
t=1,..,n,.As T=EMN/|F_)=EMn/),where I'= { p;} for

i,j=1...m, the CCC matrix of the unconditional shocks, n, is
equivalent to the constant conditional covariance matrix of the

conditionalshocks, €, from(4), € &/ = DN, D,, D, =(diag O, )”2 ,

L

and E<£ €/ |E_,>=Qt =D[I'D,, where Q, is the conditional

tt=1

covariance matrix.

The CCC model assumes that the conditional variance for each
return h, , i=1,...,m, follows a univariate GARCH process, that is:

T S
2
ho=o+ Dol + Y Bk )
i i1

Where o represents the ARCH effect, or short run persistence of
shocks to return i, Bij represents the GARCH effect, and

T S
Zoc it 2 B; denotes the long run persistence.

=1 =1

3.5. Model Estimation for Multivariate GARCH

Under the assumption of conditional normality, the parameters of
the multivariate GARCH models of any of the above specifications
can be estimated by maximizing the log-likelihood function.

N 1 ¢ J—
f(6)=—710g27t—52(log|H1|+eth €,) (6)
t=1

Where 0 denotes all the unknown parameters to be estimated,
N is the number of the oil futures and carbon emissions futures
prices and 7 is the number of observations and all other
notation is as above. The maximum-likelihood estimates for
0 is asymptotically normal, and thus traditional procedures
for statistical inference are applicable.

4. DATA

The data used in this study is the daily data from November 4, 2009
to October 29, 2014. We will get 1352 observations. The data is
derived from www.quandl.com and www.investing.com which
trade in Chicago Mercantile Exchange and ECX respectively.
Moreover, data analysis can be carried out using EVIEWS 8.
The three oil futures and carbon emissions futures return is
defined as:

R, =log( T ] %)

Where FP, is the oil futures and carbon emissions futures price at
time tand FP_, is the oil futures and carbon emissions future price
at time ¢~1. The R, of equation (7) will be used in observing the
volatility of the oil and carbon emissions between the selected oil
and carbon emissions over the period 2009-2014. We can create
the variables of the return on the oil futures and carbon emissions
futures as follows:

The returns of crude oil futures = RCRUDE, the returns of gasoline
futures = RGASOLINE, the returns of heat oil futures= RHEATOIL
and the returns of carbon emissions futures = RCO,.

In addition, we can show the movement of the daily three oil
futures prices and returns as well as carbon emissions futures
prices and returns according to Figures 1 and 2.

The descriptive statistics are given in Table 1. The daily future
returns of carbon emissions (RCO,) display the greatest variability
with the mean of —0.068%, a maximum of 22.430%, and a
minimum of —43.070%. Furthermore, the skewness, the kurtosis
and the Jarque-Bera Lagrange multiplier statistics of all oil futures
and carbon emissions futures returns are statistically significant,
thereby implying that the distribution is not normal.

5. UNIT ROOT TESTS

Standard econometric practice in the analysis of financial
time series data begins with an examination of unit roots. The
augmented Dickey-Fuller and Phillips-Perron tests are used to test
for all the oil futures and carbon emissions futures returns under
the null hypothesis of a unit root against the alternative hypothesis
of stationarity. The results from unit root tests are presented in
Table 2. The tests yield negative values in all cases for levels, such
that the individual returns series reject the null hypothesis at the
1% significance level, so that all returns are stationary.

6. EMPIRICAL RESULTS

An important task is to model the conditional mean and
conditional variances of the return series. Therefore, the
appropriate multivariate conditional volatility model given as
vector autoregression model VAR (3)-diagonal VECH, VAR
(3)-diagonal BEKK and VAR (3)-CCC models is estimated.
The conditional mean comes from VAR which can display the
source as follows:

Table 1: Descriptive statistics

Returns RCRUDE RGASOLINE RHEATOIL  RCO,
Mean 3.00E-05 6.88E-05 0.000164  —0.000687
Median 0.000297 7.45E-05 0.000230 0.000000
Maximum 0.0894 0.0968 0.0549 0.2243
Minimum —0.0903 —0.1349 —0.0865 —0.4307
SD 0.0164 0.0182 0.0142 0.0349
Skewness —0.1494 —0.4337 —0.3416 —-1.3161
Kurtosis 5.6752 8.3840 5.7794 25.2900
Jarque-Bera  378.3093 1551.6820 427.7041  26301.1600

Beside, the return series will be used to construct the conditional mean and the conditional
variances in next, SD: Standard deviation
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Figure 1: The daily three oil futures

and carbon emissions futures prices
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Table 2: Unit root tests

RCRUDE =35.712%¥*  —17.304%%*% 35 717FF 17297 *  35712%*¥*  —811.866%**  —35717*¥**  —810.068***
RGASOLINE =~ —36.319%**  —]9.835%**  —36.353***  —]9.827***  —36.343%**  —549.900%**  —36.457***  —550.837***
RHEATOIL —34.204%*%  —]5271%**  —34323%%k  —]5264%F*  —34288**Fk  —3]16.475%**  —34309*%**  —316.093***
RCO —18.460***  —16.177***  —18.457***  —16.170%**  —35987***  —400.763***  —35977F**  —400.487***

2

***Significance at the 1% level, ADF: Augmented Dickey-Fuller, PP: Phillips-Perron

6.1. VAR
Let Y=(Y,, Y,,...,Y )" denote a kx1 vector of oil futures and
carbon emissions futures return series variables. The basic vector

autoregressive model of order p, VAR (p), is

Yi=c+I1Y  +ILY , +. . +ILY,  +u, ¢ T, (8)

L...

Where I are k x k matrices of coefficients, c is a kx1 vector of
constants and W is an kx1 unobservable zero mean white noise
vector process with covariance matrix Y.

As in the univariate case with AR processes, we can use the lag
operator to represent VAR (p)

T(L)Y, = c+y,.

Where TI(L)=1,-II,L—..-TL L
If we impose stationarity on Y, in (8), the unconditional expected
value is given by w=(/, -II, —..—T1 )¢

6.2. Lag Length Selection

A reasonable strategy how to determine the lag length of the VAR
model is to fit VAR (p) models with different orders p=0,....p_
and choose the value of p which minimizes some model
selection criteria. Model selection criteria for VAR (p) could be
base on Akaike information criteria (AIC), Schewarz-Bayesian
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Figure 2: The daily three oil futures and carbon emissions futures returns

RCRUDE RGASOLINE
.100 10
.075 -
.05 -
.050 |
.025 o
.000
-.025 =094
-.050 -
-104
-.075 -]
--100 R B B B B B B o e e e s s e e s e o B e B B L e B B AR R n s A e s
Y2 A T Y2 Y2 A T 2 |V T YA T T VA T T |V B T VA I I T\
2010 2011 2012 2013 2014 2010 2011 2012 2013 2014
2]
RHEATOIL RCO2
.06 "
.04
.02
.00
-.02
-.04
-.06
-.08
=10 e e e =8 T e e e e e e
{122 U | | (Yt | /2 | 1 VA A | A [ A V2 O | B 11 B\ 11"/ | | Y | O 1 V2 | VI | [ AV | 1 B\
2010 2011 2012 2013 2014 2010 2011 2012 2013 2014
El
information criteria and Hannan-Quinn (HQ) information Table 3: Lag order selection
criteria.
0 NA 7.08e-15 -21.229 -21.213 —21.223
Before we construct the conditional mean, the first thing to do is é 23%6;‘579; g ';Ze'g _31 232 _2211'325827* _2211'430;;
. . . .10€- —zl. —<Z1. 1.
to find Fhe rlght la'g of VAR model as shown in the Table 3. From 3 37A4TF  574e-15%  —01.440%  —21.226 51360
the various criterions are found to be selected lag that 1 and 3. 4 19547  579e-15  —21.430  -21.150  —21.325
Most of them will choose lag 3. We therefore conclude that lag 3 5 10.975 5.89¢-15 —21.414  —21.068 —21.284
should be suitable for the conditional mean. 6 16.444 5.96¢-15 —21.401 —20.990  —21.247
7 11.388 6.06e-15 —21.385 —20.907 —21.205
8 10.569 6.16e-15 —21.368 —20.824 —21.164

After all multivariate conditional volatility models in this paper
are already estimated. The next step, we will have to explain that
the results of each model and select the best model. The VAR
(3)-diagonal VECH estimates of the conditional correlation
between the volatilities of the three oil futures and the carbon
emissions futures returns base on estimating the univariate
GARCH (1,1) model for each the oil and the carbon emissions
are given in Table 4. The estimates of the VAR (3)-diagonal VECH
parameters that 0, and 0, are statistically significant in the case of

Prer._rGA) > Prer._RHE) and Proa rue) €XCEPt 1N the case of

Prer, rCo.) > PRGA. RCO) and P ruE. rCO) - This indicates that the short

run persistence of shocks on the dynamic conditional correlations
is greatest for RGASOLINE with RHEATOIL at 0.111 (0,), while
the largest long run persistence of shocks to the conditional
correlations is 0.979 (0,+0,) for RCRUDE with RHEATOIL.

*Lag order selected. LR: Sequential modified LR test statistic, FPE: Final prediction error,
AIC=Akaike information criterion, SC: Schwarz information criterion, HQ: Hannan-
Quinn information criterion

The VAR (3)-diagonal BEKK estimates of the conditional
correlation between the volatilities of the three oil futures and
the carbon emissions futures returns are given in Table 5. The
estimates of the diagonal BEKK parameters that 6, and 0, are
statistically significant in all cases. This indicates that the short run
persistence of shocks on the dynamic conditional correlations is
greatestat 0.068 for RHEATOIL with RCO,, while the largest long
run persistence of shocks to the conditional correlations is 0.992
(6,+6,) for RCRUDE with RCO, and RHEATOIL with RCO,,.

Finally, in Table 6 presents the estimates for the VAR (3)-CCC
model, with p=¢g=r=s=1. The ARCH and GARCH estimates of
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the conditional variance between the three oil futures and the
carbon emissions futures returns are statistically significant in all
cases. The ARCH () estimates are generally small (<0.2), and the
GARCH (B) estimates are generally high (more than 0.5) and close
to one. Therefore, the long run persistence (o+f), is generally to
one, indicating a near long memory process. This indicates a near
long memory process. In addition, since a+p<1, all oil and carbon
emission satisfies the second moment and log-moment condition,
which is a sufficient condition for the quasi-maximum likelihood to
be consistent and asymptotically normal. VAR (3)-CCC estimates
of the CCC between RCRUDE and RHEATOIL with the highest
in 0.725. This indicates that the standardized shock on the CCC
for RCRUDE with RHEATOIL is 0.725.

Furthermore, we will choose the best model next by considering
the value of log-likelihood, AIC, Schwarz information criterion
(SIC) and HQ. From the Tables 4-6, we found that the
VAR (3)-diagonal VECH model is highest log-likelihood equal
14066.84. But the VAR (3)-diagonal BEKK has AIC, SIC and HQ
lowest is equal —22.384, —22.097 and —22.276, respectively. Thus,
it can be concluded that we should choose the VAR (3)-diagonal
BEKK model in volatility analysis of the oil futures and the carbon
emissions futures returns.

However, we can show the movement of the conditional
covariance and the conditional correlation of the three oil futures
and the carbon emissions futures returns in each model according
to Figures 3-7, respectively.

7. MULTIVARIATE GARCH DIAGNOSTIC
TESTS

The multivariate GARCH models consist of the VAR (3)-diagonal
VECH, the VAR (3)-diagonal BEKK and the VAR (3)-CCC model.
We can diagnostic check on the system residuals to determine
efficiency of estimator according to the Table 7. We found that
system residuals have no autocorrelations up to lag 6 and are
not normally distributed. Therefore, it can be concluded that the
estimators of multivariate GARCH model are efficient.

8. CONCLUSION

This paper investigates volatility comovements and spillovers for
crude oil, gasoline and heat oil futures as well as carbon emissions
futures. The empirical results showed that the estimates of the
VAR (3)-diagonal VECH and the VAR (3)-CCC parameters were
statistically significant in a case involving oil except in the case
of carbon emissions. This indicates that the short run persistence
of shocks on the dynamic conditional correlations was greatest
for RGASOLINE with RHEATOIL, while the largest long run
persistence of shocks to the conditional correlations for RCRUDE
with RGASOLINE. At the same time the VAR (3)-diagonal
BEKK parameters were statistically significant in all cases. This
indicates that the short run persistence of shocks on the dynamic
conditional correlations is greatest for RHEATOIL with RCO,,
while the largest long run persistence of shocks to the conditional
correlations for RCRUDE with RCO, and RHEATOIL with RCO,,.

Figure 3: Conditional covariance (vector autoregression model (3) - diagonal VECH estimates)
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Figure 4: Conditional covariance (vector autoregression model (3) - diagonal Baba, Engle, Kraft and Kroner estimates)
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Figure 5: Conditional covariance (vector autoregression model (3) - constant conditional correlations estimates)
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Figure 6: Conditional correlation (vector autoregression model (3) - diagonal VECH estimates)
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Figure 7: Conditional correlation (VAR (3) - diagonal Baba, Engle, Kraft and Kroner estimates)
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Table 7: Multivariate GARCH diagnostic tests

System residual tests for autocorrelations 1 19.273 0.254 System residual normality tests

H,=No residual autocorrelation 2 27.300 0.703 H=Multivariate normal 49.281 0.000

(Q-Statistics) 3 33.656 0.942 Skewness (Chi-square) 1174.560 0.000
4 49.420 0910 Kurtosis (Chi-square) 1223.841 0.000
5 62.166 0.930 Jarque-Bera
6 82.134 0.842

System residual tests for autocorrelations 1 27.306 0.038 System residual normality tests

H,=No residual autocorrelation 2 34.926 0.330 H =Multivariate normal 54.618 0.000

(Q-Statistics) 3 41.297 0.742 Skewness (Chi-square) 1644.597 0.000
4 57.081 0.717 Kurtosis (Chi-square) 1699.216 0.000
5 67.964 0.829 Jarque-Bera
6 88.761 0.687

System residual tests for autocorrelations 1 10.060 0.863 System residual normality tests

H_=No residual autocorrelation 2 14.645 0.996 H =Multivariate normal 52.250 0.000

(Q-Statistics) 3 19.088 0.999 Skewness (Chi-square) 1476.766 0.000
4 30.385 0.999 Kurtosis (Chi-square) 1529.017 0.000
5 41.607 0.999 Jarque-Bera
6 62.988 0.996

CCC: Constant conditional correlations, BEKK: Baba, Engle, Kraft and Kroner, VAR: Vector autoregression model

Finally, we would choose the best model next by considering
the value of log-likelihood, AIC, SIC and HQ. We found that the
VAR (3)-diagonal VECH model is highest log-likelihood equal
14066.84. But the VAR (3)-diagonal BEKK has AIC, SIC and HQ
lowest is equal —22.384,—22.097 and —22.276, respectively. Thus,
it could be concluded that we should choose the VAR (3)-diagonal
BEKK model in volatility analysis of the oil futures and the carbon
emissions futures returns. In addition, we could conclude that oil
futures volatility having an impact on carbon emissions futures
volatility. Such results can be useful as the management the
volatility of the oil and carbon emissions for investors, including
polluters and regulators.
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